In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.
@article{RO_2003__37_3_179_0, author = {Chen, Guangting and Burkard, Rainer E.}, title = {Constrained {Steiner} trees in {Halin} graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {179--194}, publisher = {EDP-Sciences}, volume = {37}, number = {3}, year = {2003}, doi = {10.1051/ro:2003020}, mrnumber = {2034538}, zbl = {1039.05058}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2003020/} }
TY - JOUR AU - Chen, Guangting AU - Burkard, Rainer E. TI - Constrained Steiner trees in Halin graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2003 SP - 179 EP - 194 VL - 37 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2003020/ DO - 10.1051/ro:2003020 LA - en ID - RO_2003__37_3_179_0 ER -
%0 Journal Article %A Chen, Guangting %A Burkard, Rainer E. %T Constrained Steiner trees in Halin graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2003 %P 179-194 %V 37 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2003020/ %R 10.1051/ro:2003020 %G en %F RO_2003__37_3_179_0
Chen, Guangting; Burkard, Rainer E. Constrained Steiner trees in Halin graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 3, pp. 179-194. doi : 10.1051/ro:2003020. http://www.numdam.org/articles/10.1051/ro:2003020/
[1] A PTAS for weight constrained Steiner trees in series-parallel graphs. Springer-verlag, Lecture Notes in Comput. Sci. 2108 (2001) 519-528. | MR | Zbl
and ,[2] K-pair delay constrained minimum cost routing in undirected networks. Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (2001) 230-231. | MR | Zbl
and ,[3] Computers and Intractability: A Guide to the Theory of P-Completeness. San Francisco, W.H. Freeman and Company (1979). | MR | Zbl
and ,[4] Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17 (1992) 36-42. | MR | Zbl
,[5] Steiner tree problems. Networks 22 (1992) 55-89. | MR | Zbl
and ,[6] The Steiner tree problem. Ann. Discrete Math. 53 (1992) 68-71. | MR | Zbl
, and ,[7] Computing shortest networks under a fixed topology, in Advances in Steiner Trees, edited by D.-Z. Du, J.M. Smith and J. H. Rubinstein. Kluwer Academic Publishers (2000) 39-62. | MR | Zbl
and ,[8] A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28 (2001) 213-219. | MR | Zbl
and ,[9] Steiner problem in Halin networks. Discrete Appl. Math. 17 (1987) 281-294. | MR | Zbl
,[10] Steiner problem in networks - a survey. Networks 17 (1987) 129-167. | MR | Zbl
,Cité par Sources :