In the present paper a complete procedure for solving Multiple Objective Integer Linear Programming Problems is presented. The algorithm can be regarded as a corrected form and an alternative to the method that was proposed by Gupta and Malhotra. A numerical illustration is given to show that this latter can miss some efficient solutions. Whereas, the algorithm stated bellow determines all efficient solutions without missing any one.
@article{RO_2002__36_4_351_0, author = {Abbas, Moncef and Chaabane, Djamal}, title = {An algorithm for solving multiple objective integer linear programming problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {351--364}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/ro:2003006}, mrnumber = {1997929}, zbl = {1037.90050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2003006/} }
TY - JOUR AU - Abbas, Moncef AU - Chaabane, Djamal TI - An algorithm for solving multiple objective integer linear programming problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 351 EP - 364 VL - 36 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2003006/ DO - 10.1051/ro:2003006 LA - en ID - RO_2002__36_4_351_0 ER -
%0 Journal Article %A Abbas, Moncef %A Chaabane, Djamal %T An algorithm for solving multiple objective integer linear programming problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 351-364 %V 36 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2003006/ %R 10.1051/ro:2003006 %G en %F RO_2002__36_4_351_0
Abbas, Moncef; Chaabane, Djamal. An algorithm for solving multiple objective integer linear programming problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 4, pp. 351-364. doi : 10.1051/ro:2003006. http://www.numdam.org/articles/10.1051/ro:2003006/
[1] Solving Multiple Objective Integer Linear Programming Problem. Ricerca Operativa 29 (1999) 15-39.
and ,[2] Determination of the Efficient Set in Multi-Objective Linear Programming. J. Optim. Theory Appl. 70 (1991) 467-489. | MR | Zbl
and ,[3] Finding all maximal efficient faces in multi-Objective linear programming. Math. Programming 61 (1993) 357-375. | MR | Zbl
,[4] Non linear Programming theory and Algorithms. J. Wiley, New York (1979). | MR | Zbl
and ,[5] Finding an initial Efficient Extreme Point for a Linear Multiple Objective Program. J. Oper. Res. Soc. (1981) 495-498. | MR | Zbl
,[6] Existence of Efficient solutions for vector Maximization Problems. J. Optim. Theory Appl. 26 (1978) 569-580. | MR | Zbl
,[7] Linear Multiple Objective Programs with zero-one variables. Math. Programming 13 (1977) 121-139. | MR | Zbl
,[8] Finding Efficient Points for Multi-Objective Linear Programs. Math. Programming 8 (1975) 375-377. | MR
and ,[9] Finding All Efficient Extreme Points for Multi-Objective Linear Programs. Math. Programming 14 (1978) 249-261. | MR | Zbl
and ,[10] Multi-Criteria Integer Linear Programming Problem. Cahiers Centre Études Rech. Opér. 34 (1992) 51-68. | MR | Zbl
and ,[11] Integer Programming, Theory, Applications and Computations. Academic Press (1975). | MR | Zbl
,[12] The Enumeration of the set of all Efficient solutions for a Linear Multiple Objective Program. Oper. Res. Quarterly 28/3 (1977) 711-725. | Zbl
,[13] An Algorithm for the Multiple Objective Integer Linear Programming Problem. Eur. J. Oper. Res. 9 (1982) 378-385. | MR | Zbl
and ,[14] Algorithms for the Vector Maximization Problem. Math. Programming 2 (1972) 207-229. | MR | Zbl
,[15] Problems and methods with Multiple Objective functions. Math. Programming 2 (1972) 207-229. | MR | Zbl
,[16] Multiple Criteria Optimization theory, Computation and Applications. Wiley, New York (1985). | MR | Zbl
,[17] A Survey of Techniques for Finding Efficient Solutions. Asia-Pacific J. Oper. Res. 3 (1986) 95-108. | Zbl
and ,[18] Multi-Objective Combinatorial Optimization Problem: A Survey. J. Multi-Criteria Decision Anal. 3 (1994) 83-104. | Zbl
and ,[19] Constrained Integer Linear Fractional Programming Problem. Optimization 21 (1990) 749-757. | MR | Zbl
,[20] Multiple Criteria Decision Making. Plenum, New York (1985). | MR | Zbl
,[21] The set of all non-dominated solutions in linear cases and Multi-criteria simplex method. J. Math. Anal. Appl. 49 (1975) 430-468. | MR | Zbl
and ,[22] Integer Programming with Multiple Objectives. Ann. Discrete Math. 1 (1977) 551-562. | Zbl
,Cité par Sources :