We consider a stochastic approach in order to define an equilibrium model for a traffic-network problem. In particular, we assume a markovian behaviour of the users in their movements throughout the zones of the traffic area. This assumption turns out to be effective at least in the context of urban traffic, where, in general, the users tend to travel by choosing the path they find more convenient and not necessarily depending on the already travelled part. The developed model is a homogeneous Markov chain, whose stationary distributions (if any) characterize the equilibrium.
@article{RO_2002__36_3_209_0, author = {Mastroeni, Giandomenico}, title = {A {Markov} chain model for traffic equilibrium problems}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {209--226}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/ro:2003003}, mrnumber = {1988277}, zbl = {1062.90014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2003003/} }
TY - JOUR AU - Mastroeni, Giandomenico TI - A Markov chain model for traffic equilibrium problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 209 EP - 226 VL - 36 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2003003/ DO - 10.1051/ro:2003003 LA - en ID - RO_2002__36_3_209_0 ER -
%0 Journal Article %A Mastroeni, Giandomenico %T A Markov chain model for traffic equilibrium problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 209-226 %V 36 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2003003/ %R 10.1051/ro:2003003 %G en %F RO_2002__36_3_209_0
Mastroeni, Giandomenico. A Markov chain model for traffic equilibrium problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 3, pp. 209-226. doi : 10.1051/ro:2003003. http://www.numdam.org/articles/10.1051/ro:2003003/
[1] Traffic processes in a class of finite Markov queues. Queueing Systems Theory Appl. 9 (1990) 311-326. | MR | Zbl
and ,[2] Dynamic Programming. Princeton University Press, Princeton, New Jersey (1957). | MR | Zbl
,[3] Traffic equilibria and variational inequalities. Math. Programming 26 (1980) 40-47. | Zbl
,[4] Finite-Dimensional Variational Inequalities and Nonlinear Complementarity Problem: A Survey of Theory, Algorithms and Appl. Math. Programming 48 (1990) 161-220. | MR | Zbl
and ,[5] Introduction to the mathematics of operations research. Dekker, New York (1989). | MR | Zbl
,[6] Finite Markov Processes and Their Applications. John Wiley and Sons (1980). | MR | Zbl
,[7] A Markovian model of coded video traffic which exhibits long-range dependence in statistical analysis. J. Oper. Res. Soc. Japan 42 (1999) 1-17. | MR | Zbl
and ,[8] Finite Markov Chains. Van Nostrand, Princeton, New Jersey (1960). | MR | Zbl
and ,[9] Environmental Repercussions and the Economic Structure: An Input-Output Approach. Rev. Econom. Statist. 52 (1970).
,[10] On General Properties of Dependent Statistical Variables. Bull. Math. Soc. Roumaine Sci. 37 (1935) 37-82. | JFM
,[11] Non-Cooperative games. Ann. Math. 54 (1951) 286-295. | MR | Zbl
,[12] Equilibrium traffic assignment for large scale transit networks. Eur. J. Oper. Res. 37 (1988) 176-186. | MR | Zbl
and ,[13] Nonlinear Programming and Variational Inequality Problems. Kluwer Academic Publishers, Dordrecht, Boston, London (1999). | MR | Zbl
,[14] Non-negative Matrices and Markov Chains. Springer Verlag, New York, Heidelberg, Berlin (1981). | MR | Zbl
,[15] Some Theoretical Aspects of Road Traffic Research, in Proc. of the Institute of Civil Engineers, Part II (1952) 325-378.
,Cité par Sources :