Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G), . The value of is called the weight of f. The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the signed domination number of the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a path or a complete bipartite graph.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019109
Mots-clés : Signed domination number, Mycielski construction
@article{RO_2020__54_4_1077_0, author = {Ghameshlou, Arezoo N. and Shaminezhad, Athena and Vatandoost, Ebrahim and Khodkar, Abdollah}, title = {Signed domination and {Mycielski{\textquoteright}s} structure in graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1077--1086}, publisher = {EDP-Sciences}, volume = {54}, number = {4}, year = {2020}, doi = {10.1051/ro/2019109}, mrnumber = {4100701}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2019109/} }
TY - JOUR AU - Ghameshlou, Arezoo N. AU - Shaminezhad, Athena AU - Vatandoost, Ebrahim AU - Khodkar, Abdollah TI - Signed domination and Mycielski’s structure in graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2020 SP - 1077 EP - 1086 VL - 54 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2019109/ DO - 10.1051/ro/2019109 LA - en ID - RO_2020__54_4_1077_0 ER -
%0 Journal Article %A Ghameshlou, Arezoo N. %A Shaminezhad, Athena %A Vatandoost, Ebrahim %A Khodkar, Abdollah %T Signed domination and Mycielski’s structure in graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2020 %P 1077-1086 %V 54 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2019109/ %R 10.1051/ro/2019109 %G en %F RO_2020__54_4_1077_0
Ghameshlou, Arezoo N.; Shaminezhad, Athena; Vatandoost, Ebrahim; Khodkar, Abdollah. Signed domination and Mycielski’s structure in graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 4, pp. 1077-1086. doi : 10.1051/ro/2019109. http://www.numdam.org/articles/10.1051/ro/2019109/
Signed domination in graphs. In, Signed domination in graphs. In: Vol. 1 of Graph Theory, Combinatorics and Applications. John Wiley & Sons, Inc. (1995) 311–322. | MR | Zbl
, , and ,Hamiltonicity, diameter, domination, packing and biclique partitions of Mycielski’s graphs. Discrete Appl. Math. 84 (1998) 93–105. | DOI | MR | Zbl
, and ,Bounds on the signed domination numbers of a graph. Discrete Math. 283 (2004) 87–92. | DOI | MR | Zbl
and ,Domination in Graphs: Advanced Topics. Marcel Deker Inc (1998). | MR | Zbl
, and ,Bondage numbers of Mycielski graphs. Bull. Malays. Math. Soc. 2 (2016) 229–245. | MR
, and ,Roman domination and Mycielski’s structure in graphs. Ars Combin. 106 (2012) 277–287. | MR | Zbl
,On domination and its forcing in Mycielski’s graphs. Sci. Iran. 15 (2008) 218–222. | MR | Zbl
and ,Sur le coloriage des graphes. Colloq. Math. 3 (1955) 161–162. | DOI | MR | Zbl
,Forcing signed domination numbers in graphs. Oplooska 59 (2007) 171–179. | MR | Zbl
,Lower bounds of signed domination number of a graph. Bull. Korean Math. Soc. 41 (2004) 181–188. | DOI | MR | Zbl
, and ,Introduction to Graph Theory. Prentice-Hall (2000). | MR | Zbl
,Signed and minus domination in bipartite graphs. Czeckoslovak Math. J. 56 (2006) 587–590. | DOI | MR | Zbl
,Cité par Sources :