A possibilistic optimization over an integer efficient set within a fuzzy environment
RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1437-1452.

Optimizing a linear function over the efficient set of a Multiple Objective Integer Linear Programming (MOILP) problem is known as a difficult problem to deal with, since a discrete efficient set is generally not convex and not explicitly known. Such problem becomes more and more difficult when parameters are defined with uncertainty. In this work, we deal with problems of this type for which parameters are imprecise and are assumed to be trapezoidal fuzzy numbers. The method is based on possibility and necessity measures introduced in the literature by D. Dubois and H. Prade.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019077
Classification : MSC 90C29, MSC 03E72, MSC 90C70
Mots-clés : Multiple objective programming, discrete optimization, Fuzzy parameters, possibility measure, necessity measure
@article{RO_2020__54_5_1437_0,
     author = {Menni, Assia and Chaabane, Djamal},
     title = {A possibilistic optimization over an integer efficient set within a fuzzy environment},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1437--1452},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/ro/2019077},
     mrnumber = {4126315},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2019077/}
}
TY  - JOUR
AU  - Menni, Assia
AU  - Chaabane, Djamal
TI  - A possibilistic optimization over an integer efficient set within a fuzzy environment
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2020
SP  - 1437
EP  - 1452
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2019077/
DO  - 10.1051/ro/2019077
LA  - en
ID  - RO_2020__54_5_1437_0
ER  - 
%0 Journal Article
%A Menni, Assia
%A Chaabane, Djamal
%T A possibilistic optimization over an integer efficient set within a fuzzy environment
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2020
%P 1437-1452
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2019077/
%R 10.1051/ro/2019077
%G en
%F RO_2020__54_5_1437_0
Menni, Assia; Chaabane, Djamal. A possibilistic optimization over an integer efficient set within a fuzzy environment. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1437-1452. doi : 10.1051/ro/2019077. http://www.numdam.org/articles/10.1051/ro/2019077/

[1] M. Abbas and D. Chaabane, Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174 (2006) 1140–1161. | DOI | MR | Zbl

[2] R.E. Bellman and L.A. Zadeh, Decision–making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164. | DOI | MR | Zbl

[3] H.P. Benson, Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26 (1978) 569–580. | DOI | MR | Zbl

[4] H.P. Benson, Optimization over the Efficient Set. J. Math. Anal. App. 98 (1984) 562–580. | DOI | MR | Zbl

[5] H.P. Benson and S. Sayin, Optimization over the efficient set: four special cases. J. Optim. Theory Appl. 80 (1994) 3–18. | DOI | MR | Zbl

[6] D. Chaabane and F. Mebrek, Optimization of a linear function over the set of stochastic efficient solutions. Comput. Manage. Sci. 11 (2014) 157–178. | DOI | MR | Zbl

[7] D. Chaabane and M. Pirlot, A Method for optimizing over the integer efficient set. J. Ind. Manage. Optim. 6 (2010) 811–823. | DOI | MR | Zbl

[8] D. Chaabane, B. Brahmi and Z. Ramdani, The augmented weighted Tchebychev norm for optimizing a linear function over an integer efficient set of a multicriteria linear program. Int. Trans. Oper. Res. 19 (2012) 531–545. | DOI | MR | Zbl

[9] D. Dubois and H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626. | DOI | MR | Zbl

[10] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. In: Vol. 144. Academic Press, Georgia Institute of Technology (1980). | MR | Zbl

[11] D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30 (1983) 183–224. | DOI | MR | Zbl

[12] J.G. Ecker and J.H. Song, Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83 (1994) 541–563. | DOI | MR | Zbl

[13] J. Figueira, S. Greco and M. Ehrgott, Multiple Criteria Decision Analysis: Stat of the Art Surveys. Springer, Boston (2005). | Zbl

[14] R. Horst, N.V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming. J. Optim. Theory Appl. 134 (2007) 433–443. | DOI | MR | Zbl

[15] M. Inuiguchi and M. Sakawa, Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Syst. 78 (1996) 231–241. | DOI | MR | Zbl

[16] J.M. Jorge, A bilinear algorithm for optimizing a linear function over the efficient set of a multiple objective linear programming problem. J. Global Optim. 31 (2005) 1–16. | DOI | MR | Zbl

[17] J.M. Jorge, An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195 (2009) 98–103. | DOI | MR | Zbl

[18] G. Kirlik and S. Sayn, A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232 (2014) 479–88. | DOI | MR | Zbl

[19] N.C. Nguyen, An Algorithm for Optimizing a Linear Function over the Integer Efficient Set. Konrad-Zuse-Zentrum fur Informationstechnik Berlin (1992).

[20] M. Sakawa, Fuzzy sets and interactive multiobjective optimization. In: Applied Information Technology, Springer (1993). | MR | Zbl

[21] M. Sakawa, H. Yano and T. Yumine, An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Trans. Syst. Man Cybern. 17 (1987) 654–661. | DOI | MR

[22] M. Sakawa, I. Nishizaki and H. Katagiri, Fuzzy Stochastic Multiobjective Programming. Springer, New York 159 (2011). | DOI | MR | Zbl

[23] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986). | MR | Zbl

[24] J. Sylva and A. Crema, A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158 (2004) 46–55. | DOI | MR | Zbl

[25] H. Tanaka, T. Okuda and K. Asai, Fuzzy mathematical programming (in Japanese). Trans. Soc. Instrum. Control Eng. 9 (1973) 607–613. | DOI

[26] H. Tanaka, T. Okuda and K. Asai, On Fuzzy-Mathematical programming. J. Cybern. 3 (1973) 37–46. | DOI | MR | Zbl

[27] J. Teghem, Programmation linéaire (Linear Programming). Ellipses, Université de Bruxelles (1996). | Zbl

[28] Y. Yamamoto, Optimization over the efficient set: overview. J. Global Optim. 22 (2002) 285–317. | DOI | MR | Zbl

[29] L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 38–353. | DOI | MR | Zbl

[30] H.-J. Zimmermann, Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2 (1975) 209–215. | DOI | Zbl

[31] H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. | DOI | MR | Zbl

[32] H.-J. Zimmermann, Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Springer, New York (1996). | DOI | Zbl

Cité par Sources :