Efficiency and super-efficiency under inter-temporal dependence
RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1385-1400.

In this paper, a linear programming (LP) model for measuring the relative efficiency of a decision-making unit (DMU) under inter-temporal dependence of data is proposed. Necessary and sufficient conditions are derived for identification of dynamically efficient paths. Furthermore, an LP model is proposed to estimate the super-efficiency of the dynamically efficient paths using an extended version of the modified MAJ model (Saati et al., Ric. Oper. 31 (2001) 47–59). To evaluate the applicability of the proposed method in a banking sector example, this method is employed for ranking some branches of the Iranian commercial bank.

DOI : 10.1051/ro/2019072
Classification : 90C05, 90C29, 90C39, 90C90, 90B50, 47N10
Mots-clés : Data Envelopment Analysis (DEA), ranking DMUs, efficiency, super-efficiency, inter-temporal dependence
@article{RO_2020__54_5_1385_0,
     author = {Moonesian, Vahid and Jahangiri, Saeid and Ghobadi, Saeid},
     title = {Efficiency and super-efficiency under inter-temporal dependence},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1385--1400},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/ro/2019072},
     mrnumber = {4127959},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2019072/}
}
TY  - JOUR
AU  - Moonesian, Vahid
AU  - Jahangiri, Saeid
AU  - Ghobadi, Saeid
TI  - Efficiency and super-efficiency under inter-temporal dependence
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2020
SP  - 1385
EP  - 1400
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2019072/
DO  - 10.1051/ro/2019072
LA  - en
ID  - RO_2020__54_5_1385_0
ER  - 
%0 Journal Article
%A Moonesian, Vahid
%A Jahangiri, Saeid
%A Ghobadi, Saeid
%T Efficiency and super-efficiency under inter-temporal dependence
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2020
%P 1385-1400
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2019072/
%R 10.1051/ro/2019072
%G en
%F RO_2020__54_5_1385_0
Moonesian, Vahid; Jahangiri, Saeid; Ghobadi, Saeid. Efficiency and super-efficiency under inter-temporal dependence. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1385-1400. doi : 10.1051/ro/2019072. http://www.numdam.org/articles/10.1051/ro/2019072/

[1] N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context. Eur. J. Oper. Res. 140 (2002) 249–265. | DOI | MR | Zbl

[2] P. Andersen and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 39 (1993) 1261–1294. | DOI | Zbl

[3] R. Azizi, R. Kazemi Matin and R. Farzipoor Saen, Ranking units and determining dominance relations in the cost efficiency analysis, RAIRO: OR 49 (2015) 879–896. | DOI | Numdam | MR

[4] R.D. Banker and J.L. Giffort, “Relative Efficiency Analysis’’, Unpublished Manuscript (A 1987 Version Appeared as a Working Paper, Schools of Urban and Public Affairs, Carnegie-millon University) (1987).

[5] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. | DOI | MR | Zbl

[6] W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA)-thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. | DOI | MR | Zbl

[7] W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications. Kluwer Academic Publisher, References and DEA-Solver Software (1999). | Zbl

[8] B. Ebrahimi and M. Rahmani, An improved approach to find and rank BCC-efficient DMUs in data envelopment analysis (DEA). J. Ind. Syst. Eng. 10 (2017) 25–34.

[9] M.K. Ekiz and C.T. Şakar, A new DEA approach to fully rank DMUs with an application to MBA programs. Int. Trans. Oper. Res. 27 (2020) 1886–1910. | DOI

[10] A. Emrouznejad, An alternative DEA measure: A case of OECD countries. Appl. Econ. Lett. 10 (2003) 779–782. | DOI

[11] A. Emrouznejad and M.M. Tavana, Performance Measurement with Fuzzy Data Envelopment Analysis. Springer (2014). | DOI

[12] A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. | Zbl

[13] A. Emrouznejad and E. Thanassoulis, Measurement of productivity index with dynamic DEA. Int. J. Oper. Res. 8 (2010) 247–260. | DOI | Zbl

[14] A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Socio-Econ. Plan. Sci. 61 (2018) 4–8. | DOI

[15] S. Fallah-Fini, K. Triantis and A.L. Johnson, Reviewing the literature on non-parametric dynamic efficiency measurement: State-of-the-art. J. Product. Anal. 41 (2014) 51–67. | DOI

[16] R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA. Kluwer Academic Publishers, Dordrecht, Netherlands (1996).

[17] D. Gharakhani, A. Toloie Eshlaghy, K. Fathi Hafshejani, R. Kiani Mavi and F. Hosseinzadeh Lotfi, Common weights in dynamic network DEA with goal programming approach for performance assessment of insurance companies in Iran. Manag. Res. Rev. 41 (2018) 920–938. | DOI

[18] S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO: OR 53 (2019) 1791–1805. | DOI | Numdam | MR | Zbl

[19] S. Ghobadi, A dynamic DEA model for resource allocation, Int. J. Math. Oper. Res. (in press). | MR

[20] S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Dynamic inverse DEA in the presence of fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151.

[21] S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Efficiency measure under inter-temporal dependence. Int. J. Technol. Decis. Mak. 17 (2018) 657–675. | DOI

[22] I. Guo, H. Lee and D. Lee, An integrated model for slack-based measure of super-efficiency in additive DEA. Omega 67 (2016) 160–167. | DOI

[23] A. Hatami-Marbini, Benchmarking with network DEA in a fuzzy environment. RAIRO: OR 53 (2019) 687–703. | DOI | Numdam | MR | Zbl

[24] F. Hoseinzadeh Lotfi, G.R. Jahanshahloo, M. Khodabakhshi, M. Rostami-Malkhalifeh, Z. Moghaddas and M. Vaez-Ghasemi, A review of ranking models in data envelopment analysis. J. Appl. Math. 2013 (2013) 1–20. | DOI | MR | Zbl

[25] J. Jablonsky, Multicriteria approaches for ranking of efficient units in DEA models. Cent. Eur. J. Oper. Res. 20 (2012) 435–449. | DOI | MR | Zbl

[26] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai and F. Rezai Balf, Using monte carlo method for ranking efficient DMUs. Appl. Math. Comput. 162 (2005) 371–379. | MR | Zbl

[27] G.R. Jahanshahloo, J. Sadeghi and M. Khodabakhshi, Fair ranking of the decision making units using optimistic and pessimistic weights in data envelopment analysis. RAIRO: OR 51 (2017) 253–260. | DOI | Numdam | MR | Zbl

[28] G.R. Jahanshahloo, M. Soleimani-Damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. | DOI | MR

[29] G.R. Jahanshahloo, M. Soleimani-Damaneh and M. Reshadi, On the pareto (dynamically) efficient paths. Int. J. Comput. Math. 83 (2006) 629–633. | DOI | MR | Zbl

[30] L. Li, X. Lv, W. Xu, Z. Zhang and X. Rong, Dynamic super-efficiency interval data envelopment analysis. In: 10th International Conference on Computer Science & Education (ICCSE) (2015) 213–218.

[31] S. Mehrabian, M. Alirezaee and G.R. Jahanshahloo, A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14 (1999) 261–266. | DOI | MR | Zbl

[32] J. Nemoto, M. Goto, Dynamic data envelopment analysis: Modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Econ. Lett. 64 (1999) 51–56. | DOI | Zbl

[33] J. Pourmahmoud, New model for ranking DMUs in DDEA as a special case. Int. J. Ind. Math. 7 (2015) 1–6.

[34] S. Saati, M.L. Zarafat Angiz, A. Memariani and G.R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis. Ric. Oper. 31 (2001) 47–59.

[35] K. Sengupta, Dynamics of Data Envelopment Analysis: Theory of System Efficiency. Kluwer Academic Publishers, Dordrecht, London (1995). | DOI | Zbl

[36] T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA. Eur. J. Oper. Res. 16 (2005) 536–544. | DOI | MR | Zbl

[37] R.M. Thrall, Duality classification and slacks in data envelopment analysis. Ann. Oper. Res. 66 (1996) 109–138. | DOI | MR | Zbl

[38] M. Toloo, On finding the most BCC-efficient DMU: A new integrated MIP–DEA model. Appl. Math. Model. 36 (2012) 5515–5520. | DOI | MR | Zbl

[39] K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach. Omega 38 (2010) 145–156. | DOI

[40] K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacksbased measure approach. Omega 42 (2014) 124–131. | DOI

[41] T.H. Tran, Y. Mao, P. Nathanail, P. Siebers and D. Robinson, Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis. Omega 85 (2019) 156–165. | DOI

[42] Y.M. Wang, Y. Luo and Y.X. Lan, Commonweights for fully ranking decision making units by regression analysis. Expert Syst. Appl. 38 (2011) 9122–9128. | DOI

[43] E. Zeinodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manag. Math. 31 (2020) 139–166. | MR | Zbl

Cité par Sources :