In this paper, the Picard’s iteration method is proposed to obtain an approximate analytical solution for linear and nonlinear optimal control problems with quadratic objective functional. It consists in deriving the necessary optimality conditions using the minimum principle of Pontryagin, which result in a two-point-boundary-value-problem (TPBVP). By applying the Picard’s iteration method to the resulting TPBVP, the optimal control law and the optimal trajectory are obtained in the form of a truncated series. The efficiency of the proposed technique for handling optimal control problems is illustrated by four numerical examples, and comparison with other methods is made.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019057
Mots-clés : Optimal control, Pontryagin’s minimum principle, Hamilton–Pontryagin equations, Picard’s iteration method, ordinary differential equations
@article{RO_2020__54_5_1419_0, author = {Akkouche, Abderrahmane and Aidene, Mohamed}, title = {Solving optimal control problems using the {Picard{\textquoteright}s} iteration method}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1419--1435}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/ro/2019057}, mrnumber = {4126313}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2019057/} }
TY - JOUR AU - Akkouche, Abderrahmane AU - Aidene, Mohamed TI - Solving optimal control problems using the Picard’s iteration method JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2020 SP - 1419 EP - 1435 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2019057/ DO - 10.1051/ro/2019057 LA - en ID - RO_2020__54_5_1419_0 ER -
%0 Journal Article %A Akkouche, Abderrahmane %A Aidene, Mohamed %T Solving optimal control problems using the Picard’s iteration method %J RAIRO - Operations Research - Recherche Opérationnelle %D 2020 %P 1419-1435 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2019057/ %R 10.1051/ro/2019057 %G en %F RO_2020__54_5_1419_0
Akkouche, Abderrahmane; Aidene, Mohamed. Solving optimal control problems using the Picard’s iteration method. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1419-1435. doi : 10.1051/ro/2019057. http://www.numdam.org/articles/10.1051/ro/2019057/
[1] Optimal control of partial differential equations based on the variational iteration method. Comput. Math. Appl. 68 (2014) 622–631. | DOI | MR
, and ,[2] Iterative methods for a fourth order boundary value problem. J. Comput. Appl. Math. 10 (1984) 203–217. | DOI | MR | Zbl
and ,[3] Necessary and sufficient conditions for the convergence of approximate Picard’s iterates for nonlinear boundary value problems. Arch. Math. 21 (1985) 171–176. | MR | Zbl
and ,[4] Numerical Solution of Boundary-value Problems for Ordinary Differential Equations. Prentice Hall (1988). | MR | Zbl
, and ,[5] Modified Chebyshev-Picard iteration methods for solution of boundary value problems. J. Astron. Sci. 58 (2011) 615–642. | DOI
and ,[6] Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia (2009). | MR | Zbl
,[7] Optimal Control: Calculus Of Variations, Optimal Control Theory And Numerical Methods. Springer, Boston (1993). | DOI | MR
, , and ,[8] Elements of Dynamic Optimization. McGraw-Hill, New York (1992).
,[9] Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, New Jersey (2012). | DOI | MR | Zbl
,[10] Solving a class of linear and non-linear optimal control problems by homotopy perturbation method. IMA J. Math. Control Inf. 28 (2011) 539–553. | DOI | MR | Zbl
and ,[11] A symbolic algorithm for solving linear two-point boundary value problems by modified Picard technique. Math. Comput. Model. 49 (2009) 344–351. | DOI | MR | Zbl
and ,[12] Sequential gradien-restoration algorithm for optimal control problems with general boundary conditions. J. Optim. Theory Appl. 26 (1978) 395–425. | DOI | MR | Zbl
and ,[13] Differential transformation technique for solving higher-order initial value problems. Appl. Math. Comput. 154 (2004) 299–311. | MR | Zbl
,[14] Homotopy perturbation technique. Comput. Method Appl. Mech. Eng. 178 (1999) 257–262. | DOI | MR | Zbl
,[15] Variational iteration method a kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 34 (1999) 699–708. | DOI | Zbl
,[16] Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114 (2000) 115–123. | MR | Zbl
,[17] Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 135 (2003) 73–79. | MR | Zbl
,[18] New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20 (2006) 2561–2568. | DOI | MR
,[19] Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials. J. Frankl. Inst. 339 (2002) 479–498. | DOI | MR | Zbl
,[20] On solving the initial-value problems using the differential transformation method. Appl. Math. Comput. 115 (2000) 145–160. | MR | Zbl
, and ,[21] Numerical Solution of Two Point Boundary Value Problems. Society for Industrial and Applied Mathematics, Philadelphia (1976). | DOI | MR | Zbl
,[22] The Theory of Differential Equations: Classical and Qualitative, 2nd edition. Springer, New York (2010). | MR | Zbl
, ,[23] On the numerical solutions to nonlinear biochemical reaction model using Picard-Padé technique. World J. Model. Simul. 9 (2013) 38–46.
,[24] Optimal Control Theory. An Introduction. Prentice-Hall (1970).
,[25] Picard’s successive approximation for non-linear two-point-boundary-value problems. J. Comput. Appl. Math. 8 (1982) 233–236. | DOI | MR | Zbl
and ,[26] Foundations of Optimal Control Theory. John Wiley and Sons, New York (1967). | MR | Zbl
and ,[27] On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499–513. | MR | Zbl
,[28] Open-loop optimal controller design using variational iteration method. Appl. Math. Comput. 219 (2013) 8632–8645. | MR | Zbl
and ,[29] A composite Chebyshev finite difference method for nonlinear optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1347–1361. | DOI | MR | Zbl
and ,[30] Solution of linear optimal control systems by differential transform method. Neural Comput. Appl. 23 (2013) 1311–1317. | DOI
, and ,[31] The Mathematical Theory of Optimal Processes. Pergamon Press, New York (1964). | MR | Zbl
, , and ,[32] On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl. Math. Comput. 199 (2008) 39–69. | MR | Zbl
,[33] On the Picard-Lindelof method for nonlinear second-order differential equations. Appl. Math. Comput. 203 (2008) 238–242. | MR | Zbl
,[34] Iterative and non-iterative methods for non-linear Volterra integro-differential equations. Appl. Math. Comput. 214 (2009) 287–296. | MR | Zbl
,[35] Picard’s iterative method for nonlinear advection-reaction-diffusion equations. Appl. Math. Comput. 215 (2009) 1526–1536. | MR | Zbl
,[36] Solving differential equations using modified Picard iteration. Int. J. Math. Edu. Sci. Technol. 41 (2010) 649–665. | DOI | MR | Zbl
,[37] Optimal control. J. Comput. Appl. Math. 124 (2000) 361–371. | DOI | MR | Zbl
,[38] Solving a class of nonlinear optimal control problems via He’s variational iteration method. Int. J. Control Autom. Syst. 10 (2012) 249–256. | DOI
and ,[39] Introduction to Numerical Analysis. Springer-Verlag, Berlin (1980). | DOI | MR | Zbl
and ,[40] Optimal control of a large thermic process. J. Process Control 25 (2015) 50–58. | DOI
, , and ,[41] Contrôle Optimal: Théorie et Applications. Vuibert, Collection Mathématiques Concrètes (2005). | MR | Zbl
,[42] Finding the optimal control of linear systems via He’s variational iteration method. Int. J. Comput. Math. 87 (2010) 1042–1050. | DOI | MR | Zbl
, and ,[43] On homotopy analysis method applied to linear optimal control problems. Appl. Math. Model. 37 (2013) 9617–9629. | DOI | MR
and ,Cité par Sources :