The Karush–Kuhn–Tucker conditions for multiple objective fractional interval valued optimization problems
RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 4, pp. 1161-1188.

In this article, we focus on a class of a fractional interval multivalued programming problem. For the solution concept, LU-Pareto optimality and LS-Pareto, optimality are discussed, and some nontrivial concepts are also illustrated with small examples. The ideas of LU-V-invex and LS-V-invex for a fractional interval problem are introduced. Using these invexity suppositions, we establish the Karush–Kuhn–Tucker optimality conditions for the problem assuming the functions involved to be gH-differentiable. Non-trivial examples are discussed throughout the manuscript to make a clear understanding of the results established. Results obtained in this paper unify and extend some previously known results appeared in the literature.

DOI : 10.1051/ro/2019055
Classification : 90C29, 90C30, 90C32, 90C46
Mots-clés : Fractional programming, multiobjective programming, interval valued problem, LU-$$/LS-$$-invex, $$-differentiable
@article{RO_2020__54_4_1161_0,
     author = {Debnath, Indira P. and Gupta, Shiv K.},
     title = {The {Karush{\textendash}Kuhn{\textendash}Tucker} conditions for multiple objective fractional interval valued optimization problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1161--1188},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/ro/2019055},
     mrnumber = {4109817},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2019055/}
}
TY  - JOUR
AU  - Debnath, Indira P.
AU  - Gupta, Shiv K.
TI  - The Karush–Kuhn–Tucker conditions for multiple objective fractional interval valued optimization problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2020
SP  - 1161
EP  - 1188
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2019055/
DO  - 10.1051/ro/2019055
LA  - en
ID  - RO_2020__54_4_1161_0
ER  - 
%0 Journal Article
%A Debnath, Indira P.
%A Gupta, Shiv K.
%T The Karush–Kuhn–Tucker conditions for multiple objective fractional interval valued optimization problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2020
%P 1161-1188
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2019055/
%R 10.1051/ro/2019055
%G en
%F RO_2020__54_4_1161_0
Debnath, Indira P.; Gupta, Shiv K. The Karush–Kuhn–Tucker conditions for multiple objective fractional interval valued optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 4, pp. 1161-1188. doi : 10.1051/ro/2019055. http://www.numdam.org/articles/10.1051/ro/2019055/

[1] I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions. J. Inequal. Appl. 313 (2013) 1–14. | MR | Zbl

[2] G. Alefeld and G. Mayer, Interval analysis: Theory and applications. J. Comput. Appl. Math. 121 (2000) 421–464. | DOI | MR | Zbl

[3] M.S. Bazarra, H.D. Sherali and C.M. Shetty, Nonlinear Programming. Wiley, NY (1993). | Zbl

[4] B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets Syst. 151 (2005) 581–599. | DOI | MR | Zbl

[5] A.K. Bhurjee and G. Panda, Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243 (2016) 335–348. | DOI | MR

[6] Y. Chalco-Cano, W.A. Lodwick and A. Rufian Lizana, Optimality conditions of type KKT for optimization problem with interval valued objective function via generalized derivative. Fuzzy Optim. Decis. Mak. 12 (2013) 305–322. | DOI | MR

[7] Y. Chalco-Cano and H. Román-Flores, On the new solution of fuzzy differential equations. Chaos Solitons Fract. 38 (2008) 112–119. | DOI | MR | Zbl

[8] Y. Chalco-Cano, H. Roman-Flores and M.D. Jimenez-Gamero, Generalized derivative and π -derivative for set-valued functions. Inf. Sci. 181 (2011) 2177–2188. | DOI | MR | Zbl

[9] B.D. Craven and B. Mond, Fractional Programming with invexity. In: Progress in Optimization. Springer, Boston, MA (1999) 79–89. | DOI | MR | Zbl

[10] K. Ding and N.J. Huang, A new class of interval projection neural networks for solving interval quadratic program. Chaos Solitons Fract. 25 (2008) 718–725. | DOI | Zbl

[11] R. Gupta and M. Srivastava, Optimality and duality in multiobjective programming involving support functions. RAIRO: OR 51 (2017) 433–446. | DOI | Numdam | MR

[12] M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967) 205–223. | MR | Zbl

[13] H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219–225. | DOI | Zbl

[14] A. Jayswal, I. Stancu-Minasian, J. Banerjee and A.M. Stancu, Sufficiency and duality for optimization problems involving interval-valued invex functions in parametric form. Oper. Res. 15 (2015) 137–161.

[15] C. Jiang, X. Han, G.R. Liu and G.Y. Li, The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J. Mater. Process. Technol. 182 (2007) 262–267. | DOI

[16] C. Oliveira, Multiple objective linear programming models with interval coefficients-illustrated overview. Eur. J. Oper. Res. 181 (2007) 1434–1463. | DOI | Zbl

[17] H. Rommelfanger, Linear programming with fuzzy objective. Fuzzy Sets Syst. 29 (1989) 31–48. | DOI | MR | Zbl

[18] D. Singh, B.A. Dar and D.S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 254 (2016) 29–39. | DOI | MR | Zbl

[19] I.M. Stancu-Minasian, Fractional programming: Theory, methods and applications, Math. Appl. 409 (1997) Kluwer Academic Publishers. | DOI | MR | Zbl

[20] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161 (2010) 1564–1584. | DOI | MR | Zbl

[21] L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71 (2009) 1311–1328. | DOI | MR | Zbl

[22] H. Tanaka, T. Okuda and K. Asaï, On fuzzy mathematical programming. J. Cybern. 3 (1984) 37–46. | DOI | MR | Zbl

[23] L.T. Tung, Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO: OR 52 (2018) 1019–1041. | DOI | Numdam | MR

[24] H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49–60. | DOI | MR | Zbl

[25] J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval valued objective function. Optim. Lett. 8 (2014) 607–631. | DOI | MR | Zbl

[26] F. Zhou and H. Gordon, Enhanced-interval linear programming. Eur. J. Oper. Res. 199 (2009) 323–333. | DOI | MR | Zbl

Cité par Sources :