The global center is a newly proposed graph concept. For a graph G = (V(G), E(G)), a set S ⊆ V(G) is a global distribution center if every vertex v ∈ V(G)\S is adjacent to a vertex u ∈ S with |N[u] ∩ S| ≥ |N[v] ∩ (V(G)\S)|, where N(v) = {u ∈ V(G)|uv ∈ E(G)} and N[v] = N(v) ∪ {v}. The global distribution center number of a graph G is the minimum cardinality of a global distribution center of G. In this paper, we investigate the global distribution center number for special families of graphs. Furthermore, we develop a polynomial time heuristic algorithm to find the set of the global distribution center for general graphs.
Accepté le :
DOI : 10.1051/ro/2018119
Mots-clés : Network design and communication, complex networks, distribution centers, global distribution center number, trees
@article{RO_2019__53_4_1217_0, author = {Durgut, Rafet and Kutucu, Hakan and Turaci, Tufan}, title = {Global distribution center number of some graphs and an algorithm}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1217--1227}, publisher = {EDP-Sciences}, volume = {53}, number = {4}, year = {2019}, doi = {10.1051/ro/2018119}, mrnumber = {3986374}, zbl = {1440.05185}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2018119/} }
TY - JOUR AU - Durgut, Rafet AU - Kutucu, Hakan AU - Turaci, Tufan TI - Global distribution center number of some graphs and an algorithm JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2019 SP - 1217 EP - 1227 VL - 53 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2018119/ DO - 10.1051/ro/2018119 LA - en ID - RO_2019__53_4_1217_0 ER -
%0 Journal Article %A Durgut, Rafet %A Kutucu, Hakan %A Turaci, Tufan %T Global distribution center number of some graphs and an algorithm %J RAIRO - Operations Research - Recherche Opérationnelle %D 2019 %P 1217-1227 %V 53 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2018119/ %R 10.1051/ro/2018119 %G en %F RO_2019__53_4_1217_0
Durgut, Rafet; Kutucu, Hakan; Turaci, Tufan. Global distribution center number of some graphs and an algorithm. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1217-1227. doi : 10.1051/ro/2018119. http://www.numdam.org/articles/10.1051/ro/2018119/
[1] Robustness of regular caterpillars. Int. J. Found. Comput. Sci. 28 (2017) 835–841. | DOI | MR | Zbl
and ,[2] Binding number and wheel related graphs. Int. J. Found. Comput. Sci. 28 (2017) 29–38. | DOI | MR | Zbl
and ,[3] A survey of integrity. Disc. Appl. Math. 37–38 (1992) 13–28. | DOI | MR | Zbl
, , , and ,[4] Measuring the vulnerability in networks: a heuristic approach. Ars Comb. 135 (2017) 3–15. | MR | Zbl
and ,[5] Introduction to Algorithms, 4th edition. The MIT Press, Cambridge (1990). | MR | Zbl
, and ,[6] Relation between randic index and average distance of trees. MATCH Commun. Math. Comput. Chem. 66 (2011) 605–612. | MR | Zbl
, and ,[7] Distribution centers in graphs. Disc. Appl. Math. 243 (2018) 186–193. | DOI | MR | Zbl
, , and ,[8] Analysis and design of survivable networks. IEEE Trans. Commun. Technol. 18 (1970) 501–519. | DOI | MR
and ,[9] Generalized ramsey theory for graphs, x: double star graphs. Disc. Math. 28 (1979) 247–254. | DOI | MR | Zbl
, and ,[10] Distance of thorny graphs. Publ. Linstitut Math. Nouv. Ser. 63 (1998) 31–36. | MR | Zbl
,[11] Fundementals of domination in graphs. Advanced Topic, Marcel Dekker, Inc, New York, NY (1998). | MR | Zbl
, and ,[12] Vulnerability of complex Networks. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 341–349. | DOI | MR | Zbl
, and ,[13] On k-cordial labeling of some graphs. Br. J. Math. Comput. Sci. 13 (2016) 1–7. | DOI
and ,[14] Radio labeling and radio number for generalized caterpillar graphs. J. Appl. Math. Inf. 34 (2016) 451–465. | MR | Zbl
, , and ,Cité par Sources :