A Roman {2}-dominating function on a graph is a function satisfying the condition that every vertex for which is adjacent to either at least one vertex with or two vertices with . The weight of an is the value . The minimum weight of an on a graph is called the Roman -domination number of . An is called an independent Roman -dominating function if the set of vertices with positive weight under is independent. The minimum weight of an on a graph is called the independent Roman -domination number of . In this paper, we answer two questions posed by Rahmouni and Chellali.
Mots-clés : Roman {2}-domination, independent Roman {2}-domination, tree, algorithm
@article{RO_2019__53_2_389_0, author = {Wu, Pu and Li, Zepeng and Shao, Zehui and Sheikholeslami, Seyed Mahmoud}, title = {Trees with equal {Roman} {2}-domination number and independent {Roman} {2}-domination number}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {389--400}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/ro/2018116}, zbl = {1426.05136}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2018116/} }
TY - JOUR AU - Wu, Pu AU - Li, Zepeng AU - Shao, Zehui AU - Sheikholeslami, Seyed Mahmoud TI - Trees with equal Roman {2}-domination number and independent Roman {2}-domination number JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2019 SP - 389 EP - 400 VL - 53 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2018116/ DO - 10.1051/ro/2018116 LA - en ID - RO_2019__53_2_389_0 ER -
%0 Journal Article %A Wu, Pu %A Li, Zepeng %A Shao, Zehui %A Sheikholeslami, Seyed Mahmoud %T Trees with equal Roman {2}-domination number and independent Roman {2}-domination number %J RAIRO - Operations Research - Recherche Opérationnelle %D 2019 %P 389-400 %V 53 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2018116/ %R 10.1051/ro/2018116 %G en %F RO_2019__53_2_389_0
Wu, Pu; Li, Zepeng; Shao, Zehui; Sheikholeslami, Seyed Mahmoud. Trees with equal Roman {2}-domination number and independent Roman {2}-domination number. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 389-400. doi : 10.1051/ro/2018116. http://www.numdam.org/articles/10.1051/ro/2018116/
Strong equality of Roman and weak Roman domination in trees. Dis. Appl. Math. 208 (2016) 19–26. | Zbl
, and ,On the strong Roman domination number of graphs. Dis. Appl. Math. 231 (2017) 44–59. | Zbl
, , , and ,Global Roman domination in trees. Graphs Comb. 31 (2015) 813–825. | Zbl
, and ,Extremal problems for Roman domination. SIAM J. Dis. Math. 23 (2009) 1575–1586. | Zbl
, , and ,Lower bounds on the Roman and independent Roman domination numbers. Appl. Anal. Disc. Math. 10 (2016) 65–72. | Zbl
, and ,Roman {2}-domination. Dis. Appl. Math. 204 (2016) 22–28. | Zbl
, , and ,Roman domination in graphs. Dis. Math. 278 (2004) 11–22. | Zbl
, , and ,On the Roman domination number of a graph. Dis. Math. 309 (2009) 3447–3451. | Zbl
, , and ,Fundamentals of Domination in Graphs. Marcel Dekker, New York, NY (1998). | Zbl
, and ,Defending the Roman empire – a new strategy. Dis. Math. 266 (2003) 239–251. | Zbl
and ,Italian domination in trees. Dis. Appl. Math. 217 (2017) 557–564. | Zbl
and ,Theory of Graphs. American Mathematical Society, Providence, RI (1967). | Zbl
,Independent Roman {2}-domination in graphs. Dis. Appl. Math. 236 (2018) 408–414. | Zbl
and ,On the signed Roman k-domination: complexity and thin torus graphs. Dis. Appl. Math. 233 (2017) 175–186. | Zbl
, , , and ,On the co-Roman domination in graphs. Discuss. Math. Graph Theory 39 (2018) 455–472. | Zbl
, , , and ,Cité par Sources :