An efficient simplification method for point cloud based on salient regions detection
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 487-504.

Many computer vision approaches for point clouds processing consider 3D simplification as an important preprocessing phase. On the other hand, the big amount of point cloud data that describe a 3D object require excessively a large storage and long processing time. In this paper, we present an efficient simplification method for 3D point clouds using weighted graphs representation that optimizes the point clouds and maintain the characteristics of the initial data. This method detects the features regions that describe the geometry of the surface. These features regions are detected using the saliency degree of vertices. Then, we define features points in each feature region and remove redundant vertices. Finally, we will show the robustness of our method via different experimental results. Moreover, we will study the stability of our method according to noise.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018082
Classification : 46N10, 62H35, 65D18
Mots-clés : 3D point clouds simplification, 3D point clouds segmentation, 3D object processing, points clouds, saliency
El Sayed, Abdul Rahman 1 ; El Chakik, Abdallah 1 ; Alabboud, Hassan 1 ; Yassine, Adnan 1

1
@article{RO_2019__53_2_487_0,
     author = {El Sayed, Abdul Rahman and El Chakik, Abdallah and Alabboud, Hassan and Yassine, Adnan},
     title = {An efficient simplification method for point cloud based on salient regions detection},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {487--504},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/ro/2018082},
     zbl = {1446.65014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2018082/}
}
TY  - JOUR
AU  - El Sayed, Abdul Rahman
AU  - El Chakik, Abdallah
AU  - Alabboud, Hassan
AU  - Yassine, Adnan
TI  - An efficient simplification method for point cloud based on salient regions detection
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 487
EP  - 504
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2018082/
DO  - 10.1051/ro/2018082
LA  - en
ID  - RO_2019__53_2_487_0
ER  - 
%0 Journal Article
%A El Sayed, Abdul Rahman
%A El Chakik, Abdallah
%A Alabboud, Hassan
%A Yassine, Adnan
%T An efficient simplification method for point cloud based on salient regions detection
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 487-504
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2018082/
%R 10.1051/ro/2018082
%G en
%F RO_2019__53_2_487_0
El Sayed, Abdul Rahman; El Chakik, Abdallah; Alabboud, Hassan; Yassine, Adnan. An efficient simplification method for point cloud based on salient regions detection. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 487-504. doi : 10.1051/ro/2018082. http://www.numdam.org/articles/10.1051/ro/2018082/

[1] E. Altantsetseg, Y. Muraki, F. Chiba and K. Konno, 3D surface reconstruction of stone tools by using four-directional measurement machine. Int. J. Virtual Reality (IJVR) 10 (2011) 37–43.

[2] E. Altantsetseg, Y. Muraki, K. Matsuyama and K. Konno, Feature line extraction from unorganized noisy point clouds using truncated fourier series. Visual Comput. 29 (2013) 617–626.

[3] J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18 (1975) 509–517. | Zbl

[4] D. Brodsky and B. Watson, Model simplification through refinement. Proc. Int. Conf. Graphics Interface, Quebec, Canada (2000), 221–228.

[5] A. Chida, K. Matsuyama, F. Chiba and K. Konno, A rapid searching method of adjacent flake surfaces in stone implements by using sets of measured points for generating a joining material. J. Soc. Art Sci. 13 (2014) 107–115.

[6] P. Cignoni, C. Montani and R. Scopigno, A comparison of mesh simplification algorithms. Comput. Graphics 22 (1998) 37–54.

[7] P. Cignoni, C. Rocchini and R. Scopigno, Metro: measuring error on simplified surfaces. Comput. Graphics Forum 17 (1998) 167–174.

[8] Concave Hull, available at: http://ubicomp.algoritmi.uminho.pt/local/concavehull.html

[9] A. El Chakik, A. Elmoataz and X. Desquesnes, Mean curvature flow on graphs for image and manifold restoration and enhancement. Signal Process. 105 (2014) 449–463.

[10] R. Gal and D. Cohen-Or, Salient geometric features for partial shape matching and similarity. ACM Trans. Graphics 25 (2006) 130–150.

[11] K.H. Lee, H. Woo and T. Suk, Point data reduction using 3D grids. Int. J. Adv. Manuf. Technol. 18 (2001) 201–210.

[12] K.H. Lee, H. Woo and T. Suk, Data reduction methods for reverse engineering. Int. J. Adv. Manuf. Technol. 17 (2001) 735–743.

[13] P.F. Lee and B.S. Jong, Point-based simplification algorithm. J. WSEAS Trans. Comput. Res. 3 (2008) 61–66.

[14] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg and J. Shade, The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of ACM SIGGRAPH, 1 July 2000 (2000) 131–144.

[15] C. Liao, X. Niu and M. Wang, Simplification of 3D point cloud data based on ray theory. Comput. Model. New Technol. 18 (2014) 273–278.

[16] F. Lozes, A. Elmoataz and O. Lézoray, Nonlocal processing of 3D colored point clouds. In: 21st International Conference on Pattern Recognition (2012) 1968–1971.

[17] D.P. Luebke, A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graphics Appl. 21 (2001) 24–35.

[18] Y. Miao, R. Pajarolac and J. Feng, Curvature-aware adaptive re-sampling for point-sampled geometry. Comput. Aided Des. 41 (2009) 395–403.

[19] C. Moenning and N.A. Dodgson, A new point cloud Simplification algorithm. In: Proceedings of 3rd IASTED Conference on Visualization, Imaging and Image Processing (2003) 1027–1033.

[20] C. Moenning and N.A. Dodgson, Intrinsic point cloud Simplification. In: . Proceedings of the 14th International Conference on Computer Graphic and Vision (GraphiCon), Moscow, Russia (2004).

[21] G. Mullineux and S.T. Robinson, Fairing point sets using curvature. Comput. Aided Des. 39 (2007) 27–34.

[22] A. Nouri, C. Charrier and O. Lézoray, Multi-scale mesh saliency with local adaptive patches for viewpoint selection. Signal Process. Image Commun. 38 (2015) 151–166.

[23] M. Pauly, M. Gross and L.P. Kobbelt, Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on Visualization’02, IEEE Computer Society (2002) 163–170.

[24] X. Peng, W. Huang, P. Wen and X. Wu, Simplification of scattered point cloud based on feature extraction. In: WGEC’09 Proceedings of the 2009 third International Conference Genetic and Evolutionary Computing, October 14–17 (2009) 335–338.

[25] H. Pfister, M. Zwicker, J. Van Baar and M. Gross, Surfels: surface elements as rendering primitives. In: SIGGRAPH’00 Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000) 335–342.

[26] Y. Qiu, X. Zhou, P. Yang and X. Qian, Curvature estimation of point set data based on the moving-least square surface. J. Shanghai Jiaotong Univ. (Science) 16 (2011) 402–411. | Zbl

[27] E. Shaffer and M. GarlandEfficient adaptive simplification of massive meshes. In: VIS’01: IEEE Transactions on Visualization’01, 21–26 October (2001) 127–134.

[28] B.Q. Shi, J. Liang and Q. Liu, Adaptive simplification of point cloud using #-means clustering. Comput. Aided Des. 43 (2011) 910–922.

[29] P. Shilane and T. Funkhouser, Distinctive regions of 3D surfaces. ACM Trans. Graphics 26 (2007) 7.

[30] H. Song and H.Y. Feng, A global clustering approach to point cloud simplification with a specified data reduction ratio. Comput. Aided Des. 40 (2007) 281–292.

[31] H. Song and H.-Y. Feng, A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv. Manuf. Technol. 45 (2009) 583–592.

[32] R.D. Toledo, B. Levy and J. Paul, Reverse engineering for industrial-environment cad models. In: Proceedings of TMCE 2008, April 21–25, Kusadasi, Turkey (2008).

[33] T. Varady, R. Martin and J. Cox, Reverse engineering of geometric models – an introduction. Comput. Aided Des. 29 (1997) 255–268.

[34] J. Wu, X. Shen, W. Zhu and L. Liu, Mesh saliency with global rarity. Graphical Models 75 (2013) 255–264.

[35] K. Yamahara, K. Konno, F. Chiba and M. Sato, A method of detecting adjacent flakes in stone tool restoration by extracting peeling surfaces. Jpn. Soc. Archaeological Inf. 17 (2011) 23–32.

[36] X. Yang, K. Matsuyama, K. Konno and Y. Tokuyama, Feature-preserving simplification of point cloud by using clustering approach based on mean curvature. J. Soc. Art Sci. 14 (2014) 117–128.

[37] Y. Yoshida, K. Konno and Y. Tokuyama, A distributed simplification method with PC cluster. J. Soc. Art Sci. 7 (2008) 113–123.

Cité par Sources :