Fuzzy stochastic Data Envelopment Analysis with application to NATO enlargement problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 705-721.

Data Envelopment Analysis (DEA) is a widely used technique for measuring the relative efficiencies of Decision Making Units (DMUs) with multiple deterministic inputs and multiple outputs. However, in real-world problems, the observed values of the input and output data are often vague or random. Indeed, Decision Makers (DMs) may encounter a hybrid uncertain environment where fuzziness and randomness coexist in a problem. Hence, we formulate a new DEA model to deal with fuzzy stochastic DEA models. The contributions of the present study are fivefold: (1) We formulate a deterministic linear model according to the probability–possibility approach for solving input-oriented fuzzy stochastic DEA model, (2) In contrast to the existing approach, which is infeasible for some threshold values; the proposed approach is feasible for all threshold values, (3) We apply the cross-efficiency technique to increase the discrimination power of the proposed fuzzy stochastic DEA model and to rank the efficient DMUs, (4) We solve two numerical examples to illustrate the proposed approach and to describe the effects of threshold values on the efficiency results, and (5) We present a pilot study for the NATO enlargement problem to demonstrate the applicability of the proposed model.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018075
Classification : 90Cxx, 90C15, 90C70
Mots-clés : Data envelopment analysis, fuzzy random variable, possibility—probability, ranking
Ebrahimnejad, Ali 1 ; Nasseri, Seyed Hadi 1 ; Gholami, Omid 1

1
@article{RO_2019__53_2_705_0,
     author = {Ebrahimnejad, Ali and Nasseri, Seyed Hadi and Gholami, Omid},
     title = {Fuzzy stochastic {Data} {Envelopment} {Analysis} with application to {NATO} enlargement problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {705--721},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/ro/2018075},
     zbl = {1431.90102},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2018075/}
}
TY  - JOUR
AU  - Ebrahimnejad, Ali
AU  - Nasseri, Seyed Hadi
AU  - Gholami, Omid
TI  - Fuzzy stochastic Data Envelopment Analysis with application to NATO enlargement problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 705
EP  - 721
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2018075/
DO  - 10.1051/ro/2018075
LA  - en
ID  - RO_2019__53_2_705_0
ER  - 
%0 Journal Article
%A Ebrahimnejad, Ali
%A Nasseri, Seyed Hadi
%A Gholami, Omid
%T Fuzzy stochastic Data Envelopment Analysis with application to NATO enlargement problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 705-721
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2018075/
%R 10.1051/ro/2018075
%G en
%F RO_2019__53_2_705_0
Ebrahimnejad, Ali; Nasseri, Seyed Hadi; Gholami, Omid. Fuzzy stochastic Data Envelopment Analysis with application to NATO enlargement problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 705-721. doi : 10.1051/ro/2018075. http://www.numdam.org/articles/10.1051/ro/2018075/

[1] N. Aghayi, M. Tavana and M.A. Raayatpanah, Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty. Eur. J. Ind. Eng. 10 (2016) 385–405.

[2] M.E. Bruni, D. Conforti, P. Beraldi and E. Tundis, Probabilistically constrained models for efficiency and dominance in DEA. Int. J. Prod. Econ. 117 (2009) 219–228.

[3] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decisionmaking units. Eur. J. Oper. Res. 2 (1978) 429–444. | Zbl

[4] C.B. Chen and C.M. Klein, A simple approach to ranking a group of aggregated fuzzy utilities. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 27 (1997) 26–35.

[5] W.W. Cooper, H. Deng, Z.M. Huang and S.X. Li, Chance constrained programming approaches to congestion in stochastic data envelopment analysis. Eur. J. Oper. Res. 155 (2004) 487–501. | Zbl

[6] W.W. Cooper, Z.M. Huang, V. Lelas, S.X. Li and O.B. Olesen, Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Prod. Anal. 9 (1998) 530–579.

[7] D. Dubois and H. Prade, Fuzzy Sets and Systems, Theorey and Applications. Academic Press, New York, NY (1980). | Zbl

[8] R. Farnoosh, R. Khanjani and A. Chaji, Stochastic FDH model with various returns to scale assumptions in data envelopment analysis. J. Adv. Res. Appl. Math. 3 (2011) 21–32.

[9] X. Feng and Y.K. Liu, Measurability criteria for fuzzy random vectors. Fuzzy Optim. Decis. Making. 5 (2006) 245–253. | Zbl

[10] P. Guo and H. Tanaka, Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets Syst. 119 (2001) 149–160.

[11] A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. | Zbl

[12] A. Hatami-Marbini, M. Tavana and A. Ebrahimi, A fully fuzzified data envelopment analysis model. Int. J. Inf. Decis. Sci. 3 (2011) 252–264.

[13] Z. Huang and S.X. Li, Dominance stochastic models in data envelopment analysis. Eur. J. Oper. Res. 95 (1996) 390–403. | Zbl

[14] C. Kao and S.T. Liu, Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 113 (2000) 427–437. | Zbl

[15] R.K. Shiraz, M. Tavana and K. Paryab, Fuzzy free disposal hull models under possibility and credibility measures. Int. J. Data Anal. Tech. Strat. 6 (2014) 286–306.

[16] R.K. Shiraz, V. Charles and L. Jalalzadeh, Fuzzy Rough DEA Model: a possibility and expected value approaches. Expert Syst. App. 41 (2014) 434–444.

[17] H. Kwakernaak, Fuzzy random variables. Part I: definitions and theorems. Inf. Sci. 15 (1978) 1–29. | Zbl

[18] H. Kwakernaak, Fuzzy random variables. Part II: algorithms and examples for the discrete case. Inf. Sci. 17 (1979) 253–278. | Zbl

[19] K. Land, C.A.K. Lovell and S. Thore, Chance-constrained data envelopmentanalysis. Manage. Decis. Econ. 14 (1994) 541–554.

[20] S. Lertworasirikul, F. Shu-Cherng, J.A. Joines and H.L.W. Nuttle, Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets Syst. 139 (2003) 379–394. | Zbl

[21] S.X. Li, Stochastic models and variable returns to scales in data envelopment analysis. Eur. J. Oper. Res. 104 (1998) 532–548. | Zbl

[22] B. Liu, Uncertainty Theory. Springer-Verlag, Berlin (2004). | Zbl

[23] B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10 (2002) 445–450.

[24] Y. Liu and B. Liu, Fuzzy random variable: a scalar expected value operator. Fuzzy Optim. Decis. Making 2 (2003) 43–160.

[25] E. Momeni, M. Tavana, H. Mirzagoltabar and S.M. Mirhedayatian, A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. J. Intell. Fuzzy Syst. 27 (2014) 793–804. | Zbl

[26] S.H. Nasseri, A. Ebrahimnejad and O. Gholami, Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry. Int. J. Fuzzy Syst. 20 (2018) 534–548.

[27] O.B. Olesen and N.C. Petersen, Chance constrained efficiency evaluation. Manage. Sci. 41 442–457. | Zbl

[28] O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis-a review. Eur. J. Oper. Res. 251 (2015) 2–21.

[29] R. Parameshwaran, P.S.S. Srinivasan, M. Punniyamoorthy, S. Charunyanath and C. Ashwin, Integrating fuzzy analytical hierarchy process and data envelopment analysis for performance management in automobile repair shops. Eur. J. Ind. Eng. 3 (2009) 450–467.

[30] K. Paryab, R. Khanjani Shiraz, L. Jalalzadeh and H. Fukuyama, Imprecise data envelopment analysis model with bifuzzy variables. J. Intell. Fuzzy Syst. 27 (2014) 37–48. | Zbl

[31] A. Payan, Common set of weights approach in fuzzy DEA with an application. J. Intell. Fuzzy Syst. 29 (2015) 187–194.

[32] J. Puri and S.P. Yadav, A fuzzy DEA model with undesirable fuzzy outputs and its application. Expert Syst. App. 41 (2014) 6419–6432.

[33] R. Qin and Y.K. Liu, Modeling data envelopment analysis by chance method in hybrid uncertain environments. Math. Comput. Simul. 80 (2010) 922–995. | Zbl

[34] S. Saati, A. Memariani and G.R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optim. Decis. Making 1 (2002) 255–267. | Zbl

[35] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press, New York, NY (1993). | Zbl

[36] J.K. Sengupta, A fuzzy systems approach in data envelopment analysis. Comput. Math. App. 24 (1992) 259–266. | Zbl

[37] R.K. Shiraz, M. Tavana and D. Di Caprio, Chance-constrained data envelopment analysis modeling with random-rough data. RAIRO: OR 52 (2018) 259–284. | Zbl

[38] M. Tavana, R. Khanjani Shiraz and A. Hatami-Marbini, A new chance-constrained DEA model with Birandom input and output data. J. Oper. Res. Soc. 65 (2014) 1824–1839.

[39] M. Tavana, R. Khanjani Shiraz, A. Hatami-Marbini, P.J. Agrell and P. Paryab, Fuzzy stochastic data envelopment analysis withapplication to base realignment and closure (BRAC). Expert Syst. App. 39 (2012) 12247–12259.

[40] M. Tavana, R. Khanjani Shiraz, A. Hatami-Marbini, P.J. Agrell and P. Paryab, Chance-constrained DEA models with random fuzzy inputs and outputs. Knowl.-Based Syst. 52 (2013) 32–52.

[41] E.G. Tsionas and E.N. Papadakis, A bayesian approach to statistical inference in stochastic DEA. Omega 38 (2010) 309–314.

[42] K.P. Triantis and O. Girod, A mathematical programming approach for measuring technical efficiency in a fuzzy environment. J. Prod. Anal. 10 (1998) 85–102.

[43] J.E. Tsolas and V. Charles, Incorporating risk into bank efficiency: a satisficing DEA approach to assess the Greek banking crisis. Expert Syst. Appl. 42 (2015) 3491–3500.

[44] A. Udhayakumar, V. Charles and M. Kumar, Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems. Omega 39 (2011) 387–397.

[45] Y.M. Wang, Y. Luo and L. Liang, Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert Syst. App. 36 (2009) 5205–5211.

[46] P. Wanke, C. Barros and A. Emrouznejad, A comparison between stochastic DEA and Fuzzy DEA approaches: revisiting efficiency in Angolan banks. RAIRO: OR 52 (2018) 285–303. | Zbl

[47] C. Wu, Y. Li, Q. Liu and K. Wang, A stochastic DEA model considering undesirable outputs with weak disposability. Math. Comput. Model. 58 (2013) 980–989.

[48] H.J. Zimmermann, Fuzzy set theory and its applications. 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996). | Zbl

[49] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1 (1978) 3–28. | Zbl

Cité par Sources :