A penalty method for nonlinear programming
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 1, pp. 29-38.

This paper presents a variant of logarithmic penalty methods for nonlinear convex programming. If the descent direction is obtained through a classical Newton-type method, the line search is done on a majorant function. Numerical tests show the efficiency of this approach versus classical line searches.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018061
Classification : 90C25, 90C30
Mots-clés : Logarithmic penalty method, method of majorant functions, convex programming
Bachir Cherif, Larbi 1 ; Merikhi, Bachir 1

1
@article{RO_2019__53_1_29_0,
     author = {Bachir Cherif, Larbi and Merikhi, Bachir},
     title = {A penalty method for nonlinear programming},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {29--38},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/ro/2018061},
     zbl = {1414.90264},
     mrnumber = {3899028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2018061/}
}
TY  - JOUR
AU  - Bachir Cherif, Larbi
AU  - Merikhi, Bachir
TI  - A penalty method for nonlinear programming
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 29
EP  - 38
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2018061/
DO  - 10.1051/ro/2018061
LA  - en
ID  - RO_2019__53_1_29_0
ER  - 
%0 Journal Article
%A Bachir Cherif, Larbi
%A Merikhi, Bachir
%T A penalty method for nonlinear programming
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 29-38
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2018061/
%R 10.1051/ro/2018061
%G en
%F RO_2019__53_1_29_0
Bachir Cherif, Larbi; Merikhi, Bachir. A penalty method for nonlinear programming. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 1, pp. 29-38. doi : 10.1051/ro/2018061. http://www.numdam.org/articles/10.1051/ro/2018061/

[1] F. Alizadeh, Interior point methods in semi-definite programming with application to combinatorial optimization. SIAM J. Optimiz. 5 (1995) 13–55. | DOI | MR | Zbl

[2] J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal and C. Sagastiz’Bal, Numerical optimization: theoretical and practical aspects. Mathematics and Applications, Vol. 27. Springer-Verlag, Berlin (2003). | MR | Zbl

[3] J.-P. Crouzeix, B. Merikhi, A logarithm barrier method for semi-definite programming. RAIRO: OR 42 (2008) 123–139. | DOI | Numdam | MR | Zbl

[4] J.-P. Crouzeix and A. Seeger, New bounds for the extreme values of a finite sample of real numbers, J. Math. Anal. Appl. 197 (1996) 411–426. | DOI | MR | Zbl

[5] B. Merikhi, Extension de quelques méthodes de points intérieurs pour la programmation semi-definie. These de doctorat, Universite de Setif (2006).

[6] M. Ouriemchi, Résolution de problèmes non linéaires par les méthodes de points intérieurs. Théorie et algorithmes. These de doctorat, Universite du Havre, France (2006).

[7] E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423 and 623–656. | DOI | MR | Zbl

[8] H. Wolkowicz and G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471–506. | DOI | MR | Zbl

Cité par Sources :