A b-coloring of a graph G is a proper coloring of G with k colors such that each color class has a vertex that is adjacent to at least one vertex of every other color classes. The b-chromatic number is the largest integer k for which G has a b-coloring with k colors. In this paper, we present some results on b-coloring in complementary prism graphs.
Mots-clés : b-coloring, b-chromatic number, complementary prism graph
@article{RO_2019__53_4_1187_0, author = {Bendali-Braham, Amel and Ikhlef-Eschouf, Noureddine and Blidia, Mostafa}, title = {Some results on the b-chromatic number in complementary prism graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1187--1195}, publisher = {EDP-Sciences}, volume = {53}, number = {4}, year = {2019}, doi = {10.1051/ro/2018054}, mrnumber = {3986372}, zbl = {1425.05052}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2018054/} }
TY - JOUR AU - Bendali-Braham, Amel AU - Ikhlef-Eschouf, Noureddine AU - Blidia, Mostafa TI - Some results on the b-chromatic number in complementary prism graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2019 SP - 1187 EP - 1195 VL - 53 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2018054/ DO - 10.1051/ro/2018054 LA - en ID - RO_2019__53_4_1187_0 ER -
%0 Journal Article %A Bendali-Braham, Amel %A Ikhlef-Eschouf, Noureddine %A Blidia, Mostafa %T Some results on the b-chromatic number in complementary prism graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2019 %P 1187-1195 %V 53 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2018054/ %R 10.1051/ro/2018054 %G en %F RO_2019__53_4_1187_0
Bendali-Braham, Amel; Ikhlef-Eschouf, Noureddine; Blidia, Mostafa. Some results on the b-chromatic number in complementary prism graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1187-1195. doi : 10.1051/ro/2018054. http://www.numdam.org/articles/10.1051/ro/2018054/
[1] Roman domination in complementary prisms. Australas. J. Combin. 68 (2017) 218–228. | MR | Zbl
, and ,[2] b-coloring of Kneser graphs. Discrete Appl. Math. 160 (2012) 9–14. | DOI | MR | Zbl
and ,[3] Graphs. North Holland, Amsterdam/New York (1985). | Zbl
,[4] On b-colorings in regular graphs. Discrete Appl. Math. 157 (2009) 1787–1793. | DOI | MR | Zbl
, and ,[5] b-chromatic number of cacti. Electron. Notes Discrete Math. 35 (2009) 281–286. | DOI | MR | Zbl
, , and ,[6] The b-chromatic number of power graphs of complete caterpillars. J. Discrete Math. Sci. Cryptogr. 8 (2005) 483–502. | DOI | MR | Zbl
,[7] The b-chromatic number of some power graphs. Discrete Math. Theor. Comput. Sci. 6 (2003) 45–54. | MR | Zbl
and ,[8] Exact values for the b-chromatic number of a power complete k-ary tree. J. Discrete Math. Sci. Cryptogr. 8 (2005) 117–129. | DOI | MR | Zbl
and ,[9] On the b-chromatic number of Kneser graphs. Discrete Appl. Math. 158 (2010) 232–234. | DOI | MR | Zbl
,[10] The complementary product of two graphs. Bull. Inst. Comb. Appl. 51 (2007) 21–30. | MR | Zbl
, , and ,[11] Domination and total domination in complementary prisms. J. Comb. Optim. 18 (2009) 23–37. | DOI | MR | Zbl
, , and ,[12] Locating-domination in complementary prisms of paths and cycles. Congr. Numerantium 199 (2009) 45–55. | MR | Zbl
, , and ,[13] The b-chromatic number of a graph. Discrete Appl. Math. 91 (1999) 127–141. | DOI | MR | Zbl
and ,[14] The b-chromatic number of cubic graphs. Graphs Comb. 26 (2010) 107–118. | DOI | MR | Zbl
and ,[15] On the b-chromatic number of some products. Studia Sci. Math. Hungar. 49 (2012) 156–169. | MR | Zbl
and ,[16] The b-chromatic number and related topics-a survey. Discrete Appl. Math. 235 (2018) 184–201. | DOI | MR | Zbl
and ,[17] Extendability of the complementary prism of 2-regular graphs. Thai J. Math. 14 (2016) 31–41. | MR | Zbl
, and ,[18] On b-coloring of the Kneser graphs. Discrete Math. 309 (2009) 4399–4408. | DOI | MR | Zbl
and ,[19] The b-chromatic number of powers of cycles. Discrete Math. Theor. Comput. Sci. 15 (2013) 147–156. | MR | Zbl
,[20] On the b-chromatic number of graphs. Lect. Notes Comput. Sci. 2573 (2002) 310–320. | DOI | MR | Zbl
, and ,[21] b-coloring of tight bipartite graphs and the Erdös–Faber–Lovász conjecture. Discrete Appl. Math. 161 (2013) 1060–1066. | DOI | MR | Zbl
and ,[22] b-coloring of m-tight graphs. Electron. Notes Discrete Math. 35 (2009) 209–214. | DOI | MR | Zbl
and ,[23] b-colouring the Cartesian product of trees and some other graphs. Discrete Appl. Math. 161 (2013) 650–669. | DOI | MR | Zbl
and ,[24] b-colouring outerplanar graphs with large girth. Discrete Math. 312 (2012) 1796–1803. | DOI | MR | Zbl
and ,[25] Minimaximal and maximinimal optimization problems: a partial order-based approach. Ph.D. thesis, technical report tr-1998-27 of the Computing Science Department of Glasgow University (1998).
,[26] Italian domination in complementary prisms. Electronic thesis and dissertations. Paper 3429 (2018).
,Cité par Sources :