ϵ-Efficient solutions in semi-infinite multiobjective optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1397-1410.

In this paper we apply some tools of nonsmooth analysis and scalarization method due to Chankong–Haimes to find ϵ-efficient solutions of semi-infinite multiobjective optimization problems (MP). We establish ϵ-optimality conditions of Karush–Kuhn–Tucker (KKT) type under Farkas–Minkowski (FM) constraint qualification by using ϵ-subdifferential concept. In addition we propose mixed type dual problem (including dual problems of Wolfe and Mond–Weir types as special cases) for ϵ-efficient solutions and investigate relationship between mentioned (MP) and its dual problem as well as establish several ϵ-duality theorems.

DOI : 10.1051/ro/2018028
Classification : 90C30, 49N15, 90C46, 90C34
Mots-clés : ϵ-Efficiency, semi-infinite optimization, ϵ-optimality conditions, ϵ-duality
Shitkovskaya, Tatiana 1 ; Kim, Do Sang 1

1
@article{RO_2018__52_4-5_1397_0,
     author = {Shitkovskaya, Tatiana and Kim, Do Sang},
     title = {\ensuremath{\epsilon}-Efficient solutions in semi-infinite multiobjective optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1397--1410},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4-5},
     year = {2018},
     doi = {10.1051/ro/2018028},
     mrnumber = {3884161},
     zbl = {1411.90327},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2018028/}
}
TY  - JOUR
AU  - Shitkovskaya, Tatiana
AU  - Kim, Do Sang
TI  - ϵ-Efficient solutions in semi-infinite multiobjective optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 1397
EP  - 1410
VL  - 52
IS  - 4-5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2018028/
DO  - 10.1051/ro/2018028
LA  - en
ID  - RO_2018__52_4-5_1397_0
ER  - 
%0 Journal Article
%A Shitkovskaya, Tatiana
%A Kim, Do Sang
%T ϵ-Efficient solutions in semi-infinite multiobjective optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 1397-1410
%V 52
%N 4-5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2018028/
%R 10.1051/ro/2018028
%G en
%F RO_2018__52_4-5_1397_0
Shitkovskaya, Tatiana; Kim, Do Sang. ϵ-Efficient solutions in semi-infinite multiobjective optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1397-1410. doi : 10.1051/ro/2018028. http://www.numdam.org/articles/10.1051/ro/2018028/

[1] V. Chankong and Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology. Amsterdam, North-Holland (1983). | MR | Zbl

[2] T.D. Chuong and D.S. Kim, Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160 (2014) 748–762. | DOI | MR | Zbl

[3] A. Dhara and J. Dutta, Optimality Conditions in Convex Optimization: A Finite-Dimensional View. CRC Press (2011). | DOI | MR | Zbl

[4] N. Dinh, M.A. Goberna, M.A. López and T.Q. Son, New Farkas-type constraint qualifications in convex infinite programming. ESAIM: COCV 13 (2007) 580–597. | Numdam | MR | Zbl

[5] A. Engau and M.M. Wiecek, Exact generation of ϵ-efficient solutions in multiobjective programming. OR Spectrum 29 (2007) 335–350. | DOI | MR | Zbl

[6] M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wileys, Chichester (1998). | MR | Zbl

[7] M.A. Goberna, M.A. López and J. Pastor, Farkas–Minkowski systems in semi-infinite programming. Appl. Math. Optim. 7 (1981) 295–308 | DOI | MR | Zbl

[8] J.-B. Hiriart-Urruty, ϵ-Subdifferential calculus. Vol. 57 of Conv. Anal. Optim. Res. Notes Math. Pitman, New York (1982) 43–92. | MR

[9] V. Jeyakumar, G.M. Lee and N. Dihn, New sequential Largrange multiplier conditions characterizing optimality without constraint qualification for convex programming. SIAM J. Optim. 14 (2003) 534–547. | DOI | MR | Zbl

[10] S.S. Kutateladze, Convex ϵ-programming. Sov. Math. Doklady 20 (1979) 391–393. | MR | Zbl

[11] Z. Li and S. Wang, ϵ-Approximate solutions in multiobjective optimization. Optimization 44 (1988) 161–174. | DOI | MR | Zbl

[12] J.C. Liu, ϵ-Duality theorem of nondifferentiable nonconvex multiobjective programming. J. Optim. Theory Appl. 69 (1991) 153–167. | DOI | MR | Zbl

[13] J.C. Liu, ϵ-Properly efficient solutions to nondifferentiable multiobjective programming problems. Appl. Math. Lett. 12 (1999) 109–111. | DOI | MR | Zbl

[14] P. Loridan, ϵ-Solutions in vector minimization problems. J. Optim. Theory Appl. 43 (1984) 265–276. | DOI | MR | Zbl

[15] T.Q. Son,D.S. Kim, ϵ-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints. J. Glob. Optim. 57 (2013) 447–465. | DOI | MR | Zbl

[16] T.Q. Son, J.J. Strodiot and V.H. Nguyen, ϵ-Optimality and ϵ-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints. J. Optim. Theory Appl. 141 (2009) 389–409. | DOI | MR | Zbl

[17] J.J. Strodiot, V.H. Nguyen and N. Heukemes, ϵ-Optimal solutions in nondifferentiable convex programming and some related questions. Math. Program. 25 (1983) 307–327. | DOI | MR | Zbl

Cité par Sources :