Combination of two underestimators for univariate global optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 1, pp. 177-186.

In this work, we propose a new underestimator in branch and bound algorithm for solving univariate global optimization problems. The new underestimator is a combination of two underestimators, the classical one used in αBB method (see Androulakis et al. [J. Glob. Optim. 7 (1995) 337–3637]) and the quadratic underestimator developed in Hoai An and Ouanes [RAIRO: OR 40 (2006) 285–302]. We show that the new underestimator is tighter than the two underestimators. A convex/concave test is used to accelerate the convergence of the proposed algorithm. The convergence of our algorithm is shown and a set of test problems given in Casado et al. [J. Glob. Optim. 25 (2003) 345–362] are solved efficiently.

DOI : 10.1051/ro/2018013
Classification : 65K05, 90C30, 90C34
Mots-clés : Global optimization, αBB method, quadratic underestimator, Branch and Bound
Ouanes, Mohand 1 ; Chebbah, Mohammed 1 ; Zidna, Ahmed 1

1
@article{RO_2018__52_1_177_0,
     author = {Ouanes, Mohand and Chebbah, Mohammed and Zidna, Ahmed},
     title = {Combination of two underestimators for univariate global optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {177--186},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/ro/2018013},
     mrnumber = {3812475},
     zbl = {1397.65090},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2018013/}
}
TY  - JOUR
AU  - Ouanes, Mohand
AU  - Chebbah, Mohammed
AU  - Zidna, Ahmed
TI  - Combination of two underestimators for univariate global optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 177
EP  - 186
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2018013/
DO  - 10.1051/ro/2018013
LA  - en
ID  - RO_2018__52_1_177_0
ER  - 
%0 Journal Article
%A Ouanes, Mohand
%A Chebbah, Mohammed
%A Zidna, Ahmed
%T Combination of two underestimators for univariate global optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 177-186
%V 52
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2018013/
%R 10.1051/ro/2018013
%G en
%F RO_2018__52_1_177_0
Ouanes, Mohand; Chebbah, Mohammed; Zidna, Ahmed. Combination of two underestimators for univariate global optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 1, pp. 177-186. doi : 10.1051/ro/2018013. http://www.numdam.org/articles/10.1051/ro/2018013/

[1] C.S. Adjiman, I.P. Androulakis and C.A. Floudas, A global optimization method, αBB, for general twice-differentiable constrained NLPs II. Implementation and computational results. Comput. Chem. Eng. 22 (1998) 1159–1179. | DOI

[2] C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier, A global optimization method, αBB, for general twice-differentiable constrained NLPs I theoretical advances. Comput. Chem. Eng. 22 (1998) 1137–1158. | DOI

[3] I.P. Androulakis, C.D. Marinas and C.A. Floudas, αBB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7 (1995) 337–363. | DOI | MR | Zbl

[4] L.G. Casado, J.A. Martinez, I. Garcia and Ya.D. Sergeyev, New interval analysis support functions using gradient information in a global minimization algorithm. J. Glob. Optim. 25 (2003) 345–362. | DOI | MR | Zbl

[5] C. De Boor, A Practical Method Guide to Splines. Applied Mathematical Sciences. Springer Verlag (1978). | DOI | MR | Zbl

[6] C.A. Floudas and C.E. Gounaris, A review of recent advances in global optimization. J. Glob. Optim. 45 (2009) 3–38. | DOI | MR | Zbl

[7] C.E. Gounaris and C.A. Floudas, Tight convex underestimator for C2-continuous problems: I. Univariate functions. J. Glob. Optim. 42 (2008) 51–67. | DOI | MR | Zbl

[8] C E. Gounaris and C.A. Floudas, Tight convex underestimators for C2-continuous problems: II. Multivariate functions. J. Glob. Optim. 42 (2008) 69–89. | DOI | MR | Zbl

[9] L.T. Hoai An and M. Ouanes, Convex quadratic underestimation and Branch and Bound for univariate global optimization with one nonconvex constraint. RAIRO: OR 40 (2006) 285–302. | DOI | Numdam | MR | Zbl

[10] D. Lera and Y.D. Sergeyev, An information global minimization algorithm using the local improvement technique. J. Glob. Optim. 48 (2010) 99–112. | DOI | MR | Zbl

[11] M. Locatelli and N. V. Thoai, Finite exact Branch-and-Bound algorithms for concave minimization over polytopes. J. Glob. Optim. 18 (2000) 107–128. | DOI | MR | Zbl

[12] M. Ouanes, L.T. Hoai An, N.T. Phuc and A. Zidna, New quadratic lower bound for multivariate functions in global optimization. Math. Comput. Simul. 109 (2015) 197–211. | DOI | MR | Zbl

[13] D.G. Sotiropoulos and T.N. Grapsa, Optimal centers in branch-and-prune algorithms for univariate global optimization. Appl. Math. Comput. 169 (2005) 247–277. | MR | Zbl

Cité par Sources :