Numerical solution for the performance characteristics of the M/M/C/K retrial queue with negative customers and exponential abandonments by using value extrapolation method
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 767-786.

This paper deals with a retrial queueing system M/M/C/K with exponential abandonment at which positive and negative primary customers arrive according to Poisson processes. This model is of practical interest: it permits to analyze the performance in call centers or multiprocessor computer systems. For model under study, we find the ergodicity condition and also the approximate solution by applying Value Extrapolation method which includes solving of some algebraic system of equations. To this end, we have resolved the algebraic system in question by different numerical methods. We present also numerical results to analyze the system performance.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017059
Classification : 60K25, 90B22, 68M20
Mots-clés : Multiserver retrial queue, abandonment, negative customer, ergodicity condition, value extrapolation, algebraic linear system of equations, invertible matrix, numerical method
Nesrine, Zidani 1 ; Pierre, Spiteri 1 ; Natalia, Djellab 1

1
@article{RO_2019__53_3_767_0,
     author = {Nesrine, Zidani and Pierre, Spiteri and Natalia, Djellab},
     title = {Numerical solution for the performance characteristics of the {M/M/C/K} retrial queue with negative customers and exponential abandonments by using value extrapolation method},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {767--786},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/ro/2017059},
     mrnumber = {3973143},
     zbl = {1423.60146},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2017059/}
}
TY  - JOUR
AU  - Nesrine, Zidani
AU  - Pierre, Spiteri
AU  - Natalia, Djellab
TI  - Numerical solution for the performance characteristics of the M/M/C/K retrial queue with negative customers and exponential abandonments by using value extrapolation method
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 767
EP  - 786
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2017059/
DO  - 10.1051/ro/2017059
LA  - en
ID  - RO_2019__53_3_767_0
ER  - 
%0 Journal Article
%A Nesrine, Zidani
%A Pierre, Spiteri
%A Natalia, Djellab
%T Numerical solution for the performance characteristics of the M/M/C/K retrial queue with negative customers and exponential abandonments by using value extrapolation method
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 767-786
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2017059/
%R 10.1051/ro/2017059
%G en
%F RO_2019__53_3_767_0
Nesrine, Zidani; Pierre, Spiteri; Natalia, Djellab. Numerical solution for the performance characteristics of the M/M/C/K retrial queue with negative customers and exponential abandonments by using value extrapolation method. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 767-786. doi : 10.1051/ro/2017059. http://www.numdam.org/articles/10.1051/ro/2017059/

V.M. Abramov, Analysis of multiserver retrial queueing system: a martingale approach and an algorithm of solution. Ann. Oper. 141 (2006) 19–52. | DOI | MR | Zbl

B. Almási, T. Bérczes, A. Kuki, J. Sztrik and J. Wang, Performance modeling of finite-source cognitive radio networks. Acta Cybernetica 22 (2016) 617–631. | DOI | MR

J.R. Artalejo, G-networks: a versatile approach for work removal in queueing systems. EJOR 126 (2000) 233–249. | DOI | MR | Zbl

J.R. Artalejo, Retrial queues: an algorithmic approach. J. Egyptian Math. Soc. 17 (2009) 83–101. | MR | Zbl

J.R. Artalejo and A. Gome-Zorral, Retrial Queueing Systems: A Comput. Approach. Springer (2008). | DOI | MR | Zbl

J.R. Artalejo, A. Gomez-Corral and M.F. Neuts, Analysis of multiserver queues with constant retrial rate. Eur. J. Oper. Res. 135 (2001) 569–581. | DOI | MR | Zbl

J.R. Artalejo and V. Pla, On the impact of customer balking, impatience and retrials in telecommunication systems, Comput. Math. Appl. 57 (2009) 217–229. | DOI | Zbl

J.R. Artalejo and M. Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue, Ann. Oper. Res. 116 (2002) 41–56. | DOI | MR | Zbl

K. Avrachenkov and U. Yechiali, Retrial networks with finite buffers and their application to internet data traffic. Probab. Eng. Inform. Sci. 22 (2008) 519–536. | DOI | MR | Zbl

T.V. Do, An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity. Appl. Math. Model. 34 (2010) 2272–2278. | DOI | Zbl

T.V. Do, Solution for a retrial queueing problem in cellular networks with the Fractional Guard Channel Policy. Math. Comput. Model. 53 (2011) 2059–2066. | DOI | Zbl

T.V. Do, N.H. Do and J. Zhang, An enhanced algorithm to solve multiserver retrial queueing systems with impatient customers. Comput. Industrial Eng. 65 (2013) 719–728. | DOI

M.J. Domenech-Benloch, J.M. Gimenez-Guzman, V. Pla, J. Martinez-Bauset and V. Casares-Giner, Generalized truncated methods for an efficient solution of retrial systems. Math. Probl. Eng. 2008 (2008) 183089. | MR | Zbl

M.J. Domenech-Benloch, J.M. Gimenez-Guzman, V. Pla, J. Martinez-Bauset and V. Casares-Giner, On the convergence of truncated processes of multiserver retrial queues. Math. Probl. Eng. 2010 (2010) 580349. | MR | Zbl

G.I. Falin, A survey of retrial queues. Queueing Syst. 7 (1990) 127–168. | DOI | MR | Zbl

G.I. Falin and J.G.C. Templeton, Retrial Queues. Chapman and Hall (1997). | DOI | Zbl

E. Gelenbe, Random neural networks with negative and positive signals and product form solution. Neural Comput. 1 (1989) 502–510. | DOI

E. Gelenbe, P. Glynn and K. Singman, Queues with negative arrivals. J. Appl. Probab. 28 (1991) 245–250. | DOI | MR | Zbl

J.M. Gimenez-Guzman, M.J. Domenech-Belloch, V. Pla, V. Casares-Giner and J. Martinez-Bauset, Value extrapolation technique to solve retrial queues: a comparative perspective. ETRI J. 30 (2008) 492–494. | DOI

T. Hanschke, Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts. J. App. Probab. 24 (1987) 486–494. | DOI | MR | Zbl

O. Ibe, Markov Processess for Stochastic Modeling. Elsevier, Elsevier Academic Press (2009). | MR | Zbl

D.L. Isaacson and R.W. Madsen, Markov Chains, Theory and Applications. John Wiley Sons (1976). | MR | Zbl

B. Krishna Kumar and J. Raja, On multiserver feedback retrial queues with balking and control retrial rate. Ann. Oper. Res. 141 (2006) 211–232. | DOI | MR | Zbl

B. Krishna Kumar, R. Rukmani and V. Thangaraj, On multiserver feedback retrial queue with finite buffer. Appl. Math. Model. 33 (2009) 2062–2083. | DOI | MR | Zbl

P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée à l’art de l’ingénieur. Masson Tomes 1 and 2 (1986–1987). | MR | Zbl

J. Leino and J. Virtamo, An approximate method for calculating performance measures of Markov processes. Proc. Valuetools (2006). | DOI

V.A. Malyshev and M.V. Menshikov, Ergodicity, continuity and analyticity of countable Markov chains. Proc. Moscow Math. Soc. 39 (1979) 3–48. | MR | Zbl

G. Meurant, Computer solution of large linear systems. North Holland (1999). | MR | Zbl

M.F. Neuts and B.M. Rao, Numerical investigation of a multiserver retrial model. Queueing Syst. 7 (1990) 169–190. | DOI | Zbl

A.G. Pakes, Some conditions for ergodicity and recurrence of Markov chains. Operat. Res. 17 (1969) 1058–1061. | DOI | MR | Zbl

T. Phung-Duc, Multiserver retrial queues with two types of non persistent customers. Asia-Pacific J. Oper. Res. 31 (2014) 1440009. | DOI | MR | Zbl

T. Phung-Duc, Asymptotic analysis for markovian queues with two types of non persistent retrial customers. Appl. Math. Comput. 265 (2015) 768–784. | MR | Zbl

T. Phung-Duc and K. Kawanishi, Multiserver retrial queues with after-call work. Numer. Algebra, Control Optimiz. 1 (2011) 639–656. | DOI | MR | Zbl

T. Phung-Duc and K. Kawanishi, Performance analysis of call centers with abandonment, retrial and after-call work. Performance Evaluation 80 (2014) 43–62. | DOI

M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley (2008). | Zbl

Y. Saad, Iterative methods for sparse linear systems. PWS. Publishing Company (1996). | Zbl

S.N. Stepanov, Markov models with retrials: the calculation of stationary performance measures based on the concept of truncation. Math. Comput. Model. 30 (1999) 207–228. | DOI | MR | Zbl

R.L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Cambridge Philosoph. Soc. 78 (1975) 125–136. | DOI | MR | Zbl

J. Wu and Z. Liang, A single server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule, Comput. Industrial Eng. 64 (2013) 84–93. | DOI

D.Y. Yang, J.C. Ke and C.H. Wu, The multi-server retrial system with Bernoulli feedback and starting failures. Inter. J. Comput. Math. 92 (2015) 954–969. | DOI | MR | Zbl

Cité par Sources :