A Newton method for capturing Pareto optimal solutions of fuzzy multiobjective optimization problems
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 867-886.

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.

DOI : 10.1051/ro/2017058
Classification : 90C29, 90C70, 49M15
Mots-clés : Fuzzy multiobjective problem, Newton method, Pareto optimal solution, Generalized Hukuhara differentiability, Critical point
Ghaznavi, Mehrdad 1 ; Hoseinpoor, Narges 1 ; Soleimani, Fatemeh 1

1
@article{RO_2019__53_3_867_0,
     author = {Ghaznavi, Mehrdad and Hoseinpoor, Narges and Soleimani, Fatemeh},
     title = {A {Newton} method for capturing {Pareto} optimal solutions of fuzzy multiobjective optimization problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {867--886},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/ro/2017058},
     zbl = {1423.90241},
     mrnumber = {3975703},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2017058/}
}
TY  - JOUR
AU  - Ghaznavi, Mehrdad
AU  - Hoseinpoor, Narges
AU  - Soleimani, Fatemeh
TI  - A Newton method for capturing Pareto optimal solutions of fuzzy multiobjective optimization problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 867
EP  - 886
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2017058/
DO  - 10.1051/ro/2017058
LA  - en
ID  - RO_2019__53_3_867_0
ER  - 
%0 Journal Article
%A Ghaznavi, Mehrdad
%A Hoseinpoor, Narges
%A Soleimani, Fatemeh
%T A Newton method for capturing Pareto optimal solutions of fuzzy multiobjective optimization problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 867-886
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2017058/
%R 10.1051/ro/2017058
%G en
%F RO_2019__53_3_867_0
Ghaznavi, Mehrdad; Hoseinpoor, Narges; Soleimani, Fatemeh. A Newton method for capturing Pareto optimal solutions of fuzzy multiobjective optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 867-886. doi : 10.1051/ro/2017058. http://www.numdam.org/articles/10.1051/ro/2017058/

[1] Q.H. Ansari and J.C. Yao, Recent Developments in Vector Optimiz. Springer, Berlin (2012). | DOI | MR

[2] M.A.T. Ansary and G. Panda, A modified quasi-Newton method for vector optimization problem. Optimiz. 64 (2015) 2289–2306. | DOI | MR | Zbl

[3] F. Arikan and Z. Gungor, A two-phase approach for multi-objective programming problems with fuzzy coefficients. Inform. Sci. 177 (2007) 5191–5202. | DOI | MR | Zbl

[4] C.R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games. Springer-Verlag, Berlin (2005). | Zbl

[5] B. Bede and L. Stefani, Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230 (2013) 119–141. | DOI | MR | Zbl

[6] R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manag. Sci. 17 (1970) 141–164. | DOI | MR | Zbl

[7] Y. Chalco-Cano, G.N. Silva and A. Rufian-Lizana, On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272 (2015) 60–69. | DOI | MR | Zbl

[8] M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). | MR | Zbl

[9] J. Fliege, L.M. Grana Drummond and B.F. Svaiter, Newton’s method for multiobjective optimization. SIAM J. Optimiz. 20 (2009) 602–626. | DOI | MR | Zbl

[10] B.A. Ghaznavi-Ghosoni and E. Khorram, On approximating weakly/properly efficient solutions in multiobjective programming. Math. Comput. Model. 54 (2011) 3172–3181. | DOI | MR | Zbl

[11] M. Ghaznavi, Optimality conditions via scalarization for approximate quasi-efficiency in multiobjective optimization. Filomat 31 (2017) 671–680. | DOI | MR | Zbl

[12] M. Ghaznavi and N. Hoseinpoor, A quasi-Newton method for solving fuzzy optimization problems. J. Uncertain Syst. 11 (2016) 3–17.

[13] M. Ghaznavi, F. Soleimani and N. Hoseinpoor, Parametric analysis in fuzzy number linear programming problems. Int. J. Fuzzy Syst. 18 (2016) 463–477. | DOI | MR

[14] D. Ghosh, A Newton method for capturing efficient solutions of interval optimization problems. OPSEARCH 53 (2016) 648–665. | DOI | MR | Zbl

[15] D. Ghosh, Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J. Appl. Math. Comput. 53 (2017) 709–731. | DOI | MR | Zbl

[16] E. Hosseinzadeh and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems. J. Appl. Math. Inform. 29 (2001) 1157–1165. | MR | Zbl

[17] M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac 10 (1967) 205–223. | MR | Zbl

[18] M. Jimenez and A. Bilbao, Pareto-optimal solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 160 (2009) 2714–2721. | DOI | MR | Zbl

[19] E. Khorram and V. Nozari, Multi-objective optimization with preemptive priority subject to fuzzy relation equation constraints. Iranian J. Fuzzy Syst. 9 (2012) 27–45. | MR | Zbl

[20] S. Kumar-Das and T. Mandal, A new approach for solving fully fuzzy linear fractional programming problems using the Multi objective linear programming problem. RAIRO: OR 51 (2017) 285–297. | DOI | Numdam | MR | Zbl

[21] Y.J. Lai and C.L. Hwang, Fuzzy Multiple Objective Decision Making: Methods and applications. Springer-Verlag (1994). | DOI | MR | Zbl

[22] E.S. Lee and R.J. Li, Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets Syst. 53 (1993) 275–288. | DOI | MR | Zbl

[23] W.A. Lodwick and J. Kacprzyk, Fuzzy Optimization: Recent Advances and Applications. Springer-Verlag, Berlin (2010). | DOI | MR | Zbl

[24] F. Lu and C.R. Chen, Newton-like methods for solving vector optimization problems. Appl. Anal. Int. J. 93 (2014) 1567–1586. | DOI | MR | Zbl

[25] K.M. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1998). | MR | Zbl

[26] U.M. Pirzada and V.D. Pathak, Newton method for solving the multi-variable fuzzy optimization problem. J. Optimiz. Theory Appl. 156 (2013) 867–881. | DOI | MR | Zbl

[27] S. Qu, M. Goh and F.T.S. Chan, Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39 (2011) 397–399. | DOI | MR | Zbl

[28] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press (1993). | DOI | MR | Zbl

[29] R. Slowinski, Fuzzy Sets in Decision Analysis. Kluwer Academic Publishers, Operations Research and Statistics (1998). | MR

[30] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161 (2010) 1564–1584. | DOI | MR | Zbl

[31] L. Stefanini and B. Barnabas, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonl. Anal.: Theory, Methods Appl. 71 (2009) 1311–1328. | DOI | MR | Zbl

[32] M. Upmanyu and R.R. Saxena, On solving multi objective Set Covering Problem with imprecise linear fractional objectives. RAIRO: OR 49 (2015) 495–510. | DOI | Numdam | MR | Zbl

[33] C. Veeramani and M. Sumathi, Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO: OR 48 (2014) 109–122. | DOI | Numdam | MR | Zbl

[34] X. Wang, J. Wang and X. Chen, Fuzzy multi-criteria decision making method based on fuzzy structured element with incomplete weight information. Iranian J. Fuzzy Syst. 13 (2016) 1–17. | MR | Zbl

[35] H.C. Wu, Solutions of fuzzy multiobjective programming problems based on the concept of scalarization. J. Optimiz. Theory Appl. 139 (2008) 361–378. | DOI | MR | Zbl

[36] H.C. Wu, Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients. Math. Comput. Model. 48 (2008) 232–248. | DOI | MR | Zbl

[37] H.C. Wu, The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions. Fuzzy Optimiz. Decis. Making 8 (2009) 1–28. | DOI | MR | Zbl

[38] H.C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49–60. | DOI | MR | Zbl

[39] Y.K. Wu, C.C. Liu and Y.Y. Lur, Pareto optimal solution for multiobjective linear programming problems with fuzzy goals. Fuzzy Optimiz. Decis. Making 14 (2015) 43–55. | DOI | MR | Zbl

[40] H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. | DOI | MR | Zbl

[41] H.J. Zimmermann, Fuzzy Set Theory and its Applications, 3rd ed. Kluwer Academic Publishers (1996). | MR | Zbl

Cité par Sources :