Optimal power consumption control of sensor node based on (N, D)-policy discrete-time queues
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 937-962.

In this paper, we consider two types of power consumption control policies for the long lifetime of wireless sensor node based on the discrete-time Geo/G/1 queue. One is the max(N, D)-policy, which triggers transmission mode of radio server when the N and D policies are met simultaneously, and another is the min (N, D)-policy, which restarts transmission function of radio server when either of the N and D policies is first satisfied. Under two control policies, the steady-state queueing analysis of sensor node is mathematically carried out. The mean queueing measures of sensor node, such as the mean number of data packets, mean transmission time backlog, mean waiting time, mean busy period, mean busy cycle period, and so on, are derived. Two power consumption functions are constructed through the queueing measures obtained. Numerical experiments validate that two policies are feasible and efficient for power consumption control of sensor node. At a minimum power consumption, the superiority of the N-policy, D-policy, and two dyadic (N, D) policies is numerically compared. Some practical insights on the operation of two (N, D) polices in power consumption control of sensor node are obtained.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017048
Classification : 60K20, 90B25
Mots-clés : power-saving scheme, wireless sensor node, dyadic (N, D)-policy, discrete-time queue, minimum power consumption
Liu, Renbin 1 ; Alfa, Attahiru Sule 1 ; Yu, Miaomiao 1

1
@article{RO_2019__53_3_937_0,
     author = {Liu, Renbin and Alfa, Attahiru Sule and Yu, Miaomiao},
     title = {Optimal power consumption control of sensor node based on {(N,~D)-policy} discrete-time queues},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {937--962},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/ro/2017048},
     zbl = {1423.60142},
     mrnumber = {3979009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2017048/}
}
TY  - JOUR
AU  - Liu, Renbin
AU  - Alfa, Attahiru Sule
AU  - Yu, Miaomiao
TI  - Optimal power consumption control of sensor node based on (N, D)-policy discrete-time queues
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 937
EP  - 962
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2017048/
DO  - 10.1051/ro/2017048
LA  - en
ID  - RO_2019__53_3_937_0
ER  - 
%0 Journal Article
%A Liu, Renbin
%A Alfa, Attahiru Sule
%A Yu, Miaomiao
%T Optimal power consumption control of sensor node based on (N, D)-policy discrete-time queues
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 937-962
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2017048/
%R 10.1051/ro/2017048
%G en
%F RO_2019__53_3_937_0
Liu, Renbin; Alfa, Attahiru Sule; Yu, Miaomiao. Optimal power consumption control of sensor node based on (N, D)-policy discrete-time queues. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 3, pp. 937-962. doi : 10.1051/ro/2017048. http://www.numdam.org/articles/10.1051/ro/2017048/

I.F. Akyilidiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: a survey, Comput. Netw. 38 (2002) 393–422. | DOI

C.E. Jones, K.M. Sivalingam, P. Argawal and J.C. Chen, A Survey Energy Efficient Network Protocols for Wireless Networks, Wirel. Netw. 7 (2001) 343–358. | DOI | Zbl

D. Culler and W. Hong, Wireless Sensor Networks, Commun. ACM 47 (2004) 30–33. | DOI

M. Liu, J. Cao and Y. Zheng, An energy-efficient protocol for data gathering and aggregation in wireless sensor networks, J. Supercomputing 43 (2008) 107–125. | DOI

J. Lian, K. Naik and G. Agnew, Data Capacity Improvement of Wireless Sensor Networks Using Non-uniform Sensor Distribution, Int. J. Distrib. Sensor Netw. 2 (2006) 121–145. | DOI

A. Wadaa, S. Olariu, L. Wilson, K. Jones and M. Eltoweissy, Training a Sensor Networks, Mobile Netw. Appl. 10 (2005) 151–168. | DOI

R. Machado and S. Tekinay, A survey of game-theoretic approaches in wireless sensor networks, Comput. Netw. 52 (2008) 3047–3061. | DOI | Zbl

G. Anastasi, M. Conti, M.D. Francesco and A. Passarella, Energy conservation in wireless sensor networks: a survey, Ad Hoc Netw. 7 (2009) 537–568. | DOI

K. Sha and W. Shi, Modeling the lifetime of wireless sensor networks, Sensor. Lett. 3 (2005) 1–10.

Y. Chen and Q. Zhao, On the lifetime of wireless sensor networks, IEEE Commun. Lett. 9 (2005) 976–978. | DOI

C. Alippi, G. Anastasi, M.D. Francesco and M. Roveri, Energy management in wireless sensor networks with energy-hungry sensors, IEEE Instrum. Meas. Mag. 12 (2009) 16–23. | DOI

H. Xu, L. Huang, Y. Zhang, H. Huang, S. Jiang and G. Liu, Energy-efficient cooperative data aggregation for wireless sensor networks, J. Parallel Distrib. Comput. 70 (2010) 953–961. | DOI | Zbl

K. Sinha, B.P. Sinha and D. Datta, CNS: a new energy efficient transmission scheme for wireless sensor networks, Wirel. Netw. 16 (2010) 2087–2104. | DOI

D. Wang, L. Lin and L. Xu, A study of subdividing hexagon-clustered WSN for power saving: analysis and simulation, Ad Hoc Netw. 9 (2011) 1302–1311. | DOI

F. Guerriero, A. Violi, E. Natalizio, V. Loscri and C. Costanzo, Modelling and solving optimal placement problems in wireless sensor networks, Appl. Math. Model. 35 (2011) 230–241. | DOI | MR | Zbl

B. Behdani, Y.S. Yun, J.C. Smith and Y. Xia, Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks, Comput. Oper. Res. 39 (2012) 1054–1061. | DOI | Zbl

D.-C. Huang, H.-C. Tseng, D.-J. Deng and H.-C. Chao, A queue-based prolong lifetime methods for wireless sensor node, Comput. Commun. 35 (2012) 1098–1106. | DOI

F.-C. Jiang, D.-C. Huang, C.-T. Yang and F.-Y. Leu, Lifetime Elongation for Wireless Sensor Network Using Queue-based Approaches, J. Supercomputing 59 (2012) 1312–1335. | DOI

M.J. Miller and N.H. Vaidya, A MAC protocol to reduce sensor network energy consumption using a wakeup radio, IEEE Trans. Mobile Comput. 4 (2005) 228–242. | DOI

F.-C. Jiang, H.-W. Wu and C.-T. Yang, Traffic load analysis and its application to enhancing longevity on IEEE 802.15.4/ZigBee Sensor Network, J. Supercomputing 62 (2012) 895–915. | DOI

F.-C. Jiang, H.-W. Wu, F.-Y. Leu and C.-T. Yang, Toward green sensor field by optimizing power efficiency using D-policy M/G/1 queuing systems, Mobile Inform. Syst. 9 (2013) 241–260. | DOI

F.-C. Jiang, D.-C. Huang, C.-T. Yang, C.-H. Lin and K.-H. Wang, Design strategy for optimizing power consumption of sensor node with Min(N, T) policy M/G/1 queuing models, Int. J. Commun. Syst. 25 (2012) 652–671. | DOI

H.W. Lee and W.J. Seo, The performance of the M/G/1 queue under the dyadic Min(N, D)-policy and its cost optimization, Perform. Eval. 65 (2008) 742–758. | DOI

J.X. Gu, Y.Y. Wei, Y.H. Tang and M.M. Yu, Queue size distribution of Geo/G/1 queue under the Min(N, D)-policy, J. Syst. Sci. Complexity 29 (2016) 752–771. | DOI | MR | Zbl

J. Hunter, Mathematical techniques of applied probability, in Vol 2: Discrete time models: techniques and applications, New York: Academic Press (1983). | MR | Zbl

H. Takagi, Queueing Analysis: Vol III, Discrete-time Systems, North-Holland, (1993). | MR

C.Y. Luo, Y.H. Tang, W. Li and K.L. Xiang, The recursive solution of queue length for Geo/G/1 queue with N-policy, J. Syst. Sci. Complexity 25 (2012) 293–302. | DOI | MR | Zbl

R.E. Bellman, Dyn. Program., Princeton University Press (1957). | MR

Cité par Sources :