Exact tail asymptotics for a two-stage queue: Complete solution via kernel method
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1211-1250.

In this paper, we are interested in tail asymptotics of stationary distributions for a two-stage tandem queue with coupled processors, Poisson arrivals, and exponential service times. The model was motivated by data transfer in cable networks regulated by a reservation procedure, and has been studied in the literature by several researchers. In the present paper, by using the kernel method, we obtain exact tail asymptotics for the stationary distributions. What is the more important is that we give a complete solution of this topic, which means that, given the parameters of the model, exact tail asymptotics for the stationary distributions of this two-stage queue can be obtained based on our results.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017034
Classification : 60K25, 60F10
Mots-clés : Random walk in the quarter plane, stationary distribution, Kernel method, exact tail asymptotics
Dai, Hongshuai 1 ; Kong, Lingtao 1 ; Song, Yang 2

1 School of Statistics, Shandong University of Finance and Economics, Jinan, 250014, China.
2 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
@article{RO_2017__51_4_1211_0,
     author = {Dai, Hongshuai and Kong, Lingtao and Song, Yang},
     title = {Exact tail asymptotics for a two-stage queue: {Complete} solution via kernel method},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1211--1250},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/ro/2017034},
     mrnumber = {3783942},
     zbl = {1393.60106},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2017034/}
}
TY  - JOUR
AU  - Dai, Hongshuai
AU  - Kong, Lingtao
AU  - Song, Yang
TI  - Exact tail asymptotics for a two-stage queue: Complete solution via kernel method
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 1211
EP  - 1250
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2017034/
DO  - 10.1051/ro/2017034
LA  - en
ID  - RO_2017__51_4_1211_0
ER  - 
%0 Journal Article
%A Dai, Hongshuai
%A Kong, Lingtao
%A Song, Yang
%T Exact tail asymptotics for a two-stage queue: Complete solution via kernel method
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 1211-1250
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2017034/
%R 10.1051/ro/2017034
%G en
%F RO_2017__51_4_1211_0
Dai, Hongshuai; Kong, Lingtao; Song, Yang. Exact tail asymptotics for a two-stage queue: Complete solution via kernel method. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1211-1250. doi : 10.1051/ro/2017034. http://www.numdam.org/articles/10.1051/ro/2017034/

S. Andradóttir, H. Ayhan and D.G. Down, Server assignment policies for maximizing the steady-state throughput of finite state queueing systems. Manag. Sci. 47 (2001) 1421–1439. | DOI | Zbl

C. Banderier, M. Bousquet-Mlou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions of generating trees. Discrete Math. 246 (2002) 29–55. | DOI | MR | Zbl

E. Bender, Asymptotic methods in enumeration. SIAM Rev. 16 (1974) 485–513. | DOI | MR | Zbl

H.S. Dai and Y.Q. Zhao, Wireless 3-hop networks with stealing revisited: A kernel approach. INFOR. 51 (2013) 192–205. | MR | Zbl

D. Denteneer and J.S.H. van Leeuwaarden, Multi-Access, Reservations and Queues.Springer (2008). | Zbl

F. Guillemin and J.S.H. Van Leeuwaarden, Rare event asymptotics for a random walk in the quarter plane. Queueing Syst. 67 (2011) 1–32. | DOI | MR | Zbl

H. Li and Y.Q. Zhao, Tail asymptotics for a generalized two-demand queuing model-a kernel method. Queueing Syst. 69 (2011) 77–100. | DOI | MR | Zbl

H. Li and Y.Q. Zhao, A kernel method for exact tail asymptotic-random walks in the quarter plane. Preprint (2015). | arXiv

H. Li, J. Tavakoli and Y.Q. Zhao, Analysis of exact tail asymptotics for singular random walks in the quarter plane. Queueing Syst. 74 (2013) 151–179. | DOI | MR | Zbl

D.E. Knuth, The Art of Computer Programming, Fundamental Algorithms, vol. 1 (2nd ed).Addison-Wesley (1969). | MR

V.A. Malyshev, An analytical method in the theory of two-dimensional positive random walks. Sib. Math. J. 13 (1972) 917–929. | DOI | MR | Zbl

V.A. Malyshev, Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks. Sib. Math. J. 14 (1973) 109–118. | DOI | MR | Zbl

M. Miyazawa, Light tail asymptotics in multidimensional reflecting processes for queueing networks. TOP 19 (2011) 233–299. | DOI | MR | Zbl

G. Fayolle, R. Iasnogorodski and V. Malyshev, Random walks in the Quarter-plane. Springer (1991). | MR | Zbl

F. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press (2009). | MR | Zbl

J. Resing and L. Örmeci, A tandem queueing model with coupled processors. Oper. Res. Lett. 31 (2003) 383–389. | DOI | MR | Zbl

Y. Song, Z.M. Liu and H.S. Dai, Exact tail asymptotics for a discrete-time preemptive priority queue. Acta Math. Appl. Sin. Engl. Ser. 31 (2015) 43–58. | DOI | MR | Zbl

J.S.H. Van Leeuwaarden and J. Resing, A tandem queue with coupled processors: Computational issues. Queueing Syst. 50 (2004) 29–52. | MR | Zbl

H.B. Zhang, T-QBD: Theory and Applications(in Chinese). Ph.D. thesis, Shanghai University, China (2010).

Cité par Sources :