The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. This method include the already existing two practical nonlinear conjugate gradient methods, to combine the nice global convergence properties of Fletcher-Reeves method (abbreviated FR) and the good numerical performances of the Polak–Ribiére–Polyak method (abbreviated PRP), which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. Our numerical results show that of the new method is very efficient for the given test problems. In addition we will study the methods related to the new nonlinear conjugate gradient method.
Mots clés : Unconstrained optimization, conjugate gradient method, line search, global convergence
@article{RO_2017__51_4_1101_0, author = {Sellami, B. and Belloufi, M. and Chaib, Y.}, title = {Globally convergence of nonlinear conjugate gradient method for unconstrained optimization}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1101--1117}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/ro/2017028}, mrnumber = {3783936}, zbl = {1398.65129}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2017028/} }
TY - JOUR AU - Sellami, B. AU - Belloufi, M. AU - Chaib, Y. TI - Globally convergence of nonlinear conjugate gradient method for unconstrained optimization JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 1101 EP - 1117 VL - 51 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2017028/ DO - 10.1051/ro/2017028 LA - en ID - RO_2017__51_4_1101_0 ER -
%0 Journal Article %A Sellami, B. %A Belloufi, M. %A Chaib, Y. %T Globally convergence of nonlinear conjugate gradient method for unconstrained optimization %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 1101-1117 %V 51 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2017028/ %R 10.1051/ro/2017028 %G en %F RO_2017__51_4_1101_0
Sellami, B.; Belloufi, M.; Chaib, Y. Globally convergence of nonlinear conjugate gradient method for unconstrained optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1101-1117. doi : 10.1051/ro/2017028. http://www.numdam.org/articles/10.1051/ro/2017028/
Descent property and global convergence of the fletcher reeves method with inexact line search. IMA J. Numer. Anal. 5 (1985) 121–124. | DOI | MR | Zbl
,New property and global convergence of the fletcher-reeves method with inexact line searches. IMA J. Numer. Anal. 5 (1985) 122–124. | DOI | MR | Zbl
,An unconstrained optimization test functions collection. Adv. Model. Optim 10 (2008) 147–161. | MR | Zbl
,Cute: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. (TOMS) 21 (1995) 123–160. | DOI | Zbl
, , and ,Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (2000) 345–358. | DOI | MR | Zbl
, , , , and ,Y. Dai and Y. Yuan, Some properties of a new conjugate gradient method, in Advances in Nonlinear Programming. Springer (1998) 251–262. | MR | Zbl
A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. | DOI | MR | Zbl
and ,A class of globally convergent conjugate gradient methods. Sci. China Ser. A: Math. 46 (2003) 251–261. | DOI | MR | Zbl
and ,Convergence properties of the fletcher-reeves method. IMA J. Numer. Anal. 16 (1996) 155–164. | DOI | MR | Zbl
and ,The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4 (1967) 10–26. | DOI | MR | Zbl
,Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. | DOI | MR | Zbl
and ,Methods of conjugate gradients for solving linear systems. Res. Nation. Bureau Standards 49 (1952) 409–436. | DOI | MR | Zbl
,Global convergence result for conjugate gradient methods. J. Optim. Theory Appl. 71 (1991) 399–405. | DOI | MR | Zbl
and ,Benchmarking optimization software with performance files. Math. Program 91 (2002) 201–213. | DOI | MR | Zbl
and ,The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112. | DOI | Zbl
,M. Powell, Nonconvex minimization calculations and the conjugate gradient method. Numer. Anal. (1984) 122–141. | MR | Zbl
A new two-parameter family of nonlinear conjugate gradient methods. Optimization 64 (2015) 993–1009. | DOI | MR | Zbl
, and ,Conjugate gradient methods with inexact searches. Math. Oper. Res. 3 (1978) 244–256. | DOI | MR | Zbl
,Cité par Sources :