A new hypervolume-based differential evolution algorithm for many-objective optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1301-1315.

Evolutionary algorithms are successfully used for many-objective optimization. However, solutions are prone to become nondominated from each other with the increase in the number of objectives, which reduces the efficiency of Pareto dominance-based algorithms. In this paper, a new hypervolume-based differential evolution algorithm (MODEhv) is proposed for many-objective optimization problems (MaOPs). In MODEhv, a modified differential evolution paradigm with automatic parameter configuration strategy is used to balance exploration and exploitation of the algorithm. Besides, the hypervolume indicator is incorporated for the selection of solutions to be varied and solutions to be kept in archive respectively. Finally, a threshold technique is employed to improve diversity of solutions in archive. MODEhv is investigated on a set of widely used benchmark problems and compared with five state-of-the-art algorithms. The experimental results show the efficiency of MODEhv for solving MaOPs.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017014
Classification : 65K10, 68T20
Mots clés : Differential Evolution, Hypervolume indicator, Many-objective optimization, Many-objective evolutionary algorithm
Liu, Chao 1, 2 ; Zhao, Qi 1, 2 ; Yan, Bai 3 ; Gao, Yang 1, 2

1 College of Economics and Management, Beijing University of Technology, Beijing 100124, China.
2 Research Base of Beijing Modern Manufacturing Development, Beijing 100124, China
3 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
@article{RO_2017__51_4_1301_0,
     author = {Liu, Chao and Zhao, Qi and Yan, Bai and Gao, Yang},
     title = {A new hypervolume-based differential evolution algorithm for many-objective optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1301--1315},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/ro/2017014},
     mrnumber = {3783946},
     zbl = {1398.65143},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2017014/}
}
TY  - JOUR
AU  - Liu, Chao
AU  - Zhao, Qi
AU  - Yan, Bai
AU  - Gao, Yang
TI  - A new hypervolume-based differential evolution algorithm for many-objective optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 1301
EP  - 1315
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2017014/
DO  - 10.1051/ro/2017014
LA  - en
ID  - RO_2017__51_4_1301_0
ER  - 
%0 Journal Article
%A Liu, Chao
%A Zhao, Qi
%A Yan, Bai
%A Gao, Yang
%T A new hypervolume-based differential evolution algorithm for many-objective optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 1301-1315
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2017014/
%R 10.1051/ro/2017014
%G en
%F RO_2017__51_4_1301_0
Liu, Chao; Zhao, Qi; Yan, Bai; Gao, Yang. A new hypervolume-based differential evolution algorithm for many-objective optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1301-1315. doi : 10.1051/ro/2017014. http://www.numdam.org/articles/10.1051/ro/2017014/

M. Ali, P. Siarry and M. Pant, An efficient differential evolution based algorithm for solving multi-objective optimization problems. Europ. J. Oper. Res. 217 (2012) 404–416. | MR | Zbl

H. Abbass, R. Sarker and C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. Evolutionary Computation. Proc. of the 2001 Congress 2 (2001) 971–978. | DOI

J. Bader and E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Comput. 19 (2011) 45–76. | DOI

S. Bandyopadhyay and A. Mukherjee, An Algorithm for Many-Objective Optimization with Reduced Objective Computations: A Study in Differential Evolution. IEEE Trans. Evolut. Comput. 19 (2015) 400–413. | DOI

M. Basseur, A. Liefooghe and K. Le, The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems. J. Heuristics 18 (2012) 263–296. | DOI

D.W. Corne and J.D. Knowles, Techniques for highly multiobjective optimisation: some nondominated points are better than others. Proc. of the 9th annual conference on Genetic and evolutionary computation. ACM (2007) 773–780.

O. Chikumbo, E. Goodman and K. Deb, Approximating a multi-dimensional pareto front for a land use management problem: A modified moea with an epigenetic silencing metaphor. IEEE Congress on Evolutionary Computation. IEEE (2012) 1–9.

K. Deb, A. Pratap and S. Agarwal, A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation. IEEE Trans. 6 (2002) 182–197.

S. Das and P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. Evolutionary Computation. IEEE Trans. 15 (2011) 4–31.

K. Deb, L. Thiele and M. Laumanns, Scalable multi-objective optimization test problems. Proc. of the Congress on Evolutionary Computation (CEC-2002), Honolulu, USA (2002) 825–830.

K. Deb and D.K. Saxena, On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kangal report (2005) 2005011.

G. Fu, Z. Kapelan and J.R. Kasprzyk, Optimal design of water distribution systems using many-objective visual analytics. J. Water Resources Plan. Manag. 139 (2012) 624–633. | DOI

S. Jiang and Z. Cai, A new differential evolution for multiobjective optimization by uniform design and minimum reduce hypervolume. Natural Computing. Springer Jpn (2010) 199–208.

X. He, C. Dai and Z. Chen, Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method. Math. Probl. Eng. (2014) 259–473. | MR

I. Giagkiozis, R.C. Purshouse and P.J. Fleming, An overview of population-based algorithms for multi-objective optimisation. Inter. J. Syst. Sci. 46 (2015) 1572–1599. | DOI | MR | Zbl

H. Li and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. Evolut. Comput. IEEE Trans. 13 (2009) 284–302. | DOI

K. Narukawa and T. Rodemann, Examining the performance of evolutionary many-objective optimization algorithms on a real-world application[C]. Genetic and Evolutionary Computing (ICGEC). Sixth Inter. Confer. IEEE (2012) 316–319.

A.J. Nebro, J.J. Durillo and J. Garcia−Nieto, Smpso: A new pso-based metaheuristic for multi-objective optimization. Computational intelligence in miulti-criteria decision-making. MCDM’09. IEEE Symposium (2009) 66–73.

R.C. Purshouse and P.J. Fleming, On the evolutionary optimization of many conflicting objectives. Evolutionary Computation. IEEE Trans. 11 (2007) 770–784.

K.E. Parsopoulos, D.K. Tasoulis and N.G. Pavlidis, Vector evaluated differential evolution for multiobjective optimization. IEEE Congress on Evolutionary Computation (2004) 204–211.

A. Ponsich, A.L. Jaimes and C. Coello, A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. Evolutionary Computation. IEEE Trans. 17 (2013) 321–344.

R.G.D. Steel, J.H. Torrie and D.A. Dickey, Principles and procedures of statistics a biometrical approach. WCB/McGraw-Hill (1997).

R. Storn and K. Price, Differential evolution Ca simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimiz. 11 (1997) 341–359. | DOI | MR | Zbl

H. Ishibuchi, N. Tsukamoto and Y. Nojima, Evolutionary many-objective optimization. Genetic and Evolving Systems. GEFS. 3rd International Workshop on IEEE (2008) 47–52.

T. Wagner, N. Beume and B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization. Evolutionary multi-criterion optimization. Springer Berlin/Heidelberg (2007) 742–756.

S. Kukkonen and J. Lampinen, GDE3: The third evolution step of generalized differential evolution. Evolutionary Computation. IEEE Congress on Evolutionary Computation 1 (2005) 443–450.

G. Wu, R. Mallipeddi and P.N. Suganthan, Differential evolution with multi-population based ensemble of mutation strategies. Inform. Sci. 329 (2016) 329–345. | DOI

M. Črepinšek, S.H. Liu and M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR) 45 (2013) 35. | DOI | Zbl

E. Zitzler, L. Thiele and J. Bader, On set-based multiobjective optimization. IEEE Trans. Evolut. Comput. 14 (2010) 58–79. | DOI

E. Zitzler and S. Knzli, Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg (2004) 832–842

E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications. Ithaca: Shaker (1999).

E. Zitzler, L. Thiele and M. Laumanns, Performance assessment of multiobjective optimizers: an analysis and review. Evolut. Comput. IEEE Trans. 7 (2003) 117–132. | DOI

A. Zhou, B. Yqu and H. Li, Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Comput. 1 (2011) 32–49. | DOI

E. Zitzler, M. Laumanns and L. Thiele, Improving the performance of the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich (2001).

Cité par Sources :