Network robustness and residual closeness
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 839-847.

A central issue in the analysis of complex networks is the assessment of their robustness and vulnerability. A variety of measures have been proposed in the literature to quantify the robustness of networks and a number of graph-theoretic parameters have been used to derive formulas for calculating network reliability. In this paper, we study the vulnerability of interconnection networks to the failure of individual nodes, using a graph-theoretic concept of residual closeness as a measure of network robustness which provides a much fuller characterization of the network.

DOI : 10.1051/ro/2016071
Classification : 05C40, 68M10, 68R10
Mots-clés : Graph vulnerability, closeness, network design and communication, stability, communication network
Aytaç, Aysun 1 ; Berberler, Zeynep Nihan Odabaş 1

1
@article{RO_2018__52_3_839_0,
     author = {Ayta\c{c}, Aysun and Berberler, Zeynep Nihan Odaba\c{s}},
     title = {Network robustness and residual closeness},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {839--847},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/ro/2016071},
     mrnumber = {3868448},
     zbl = {1403.05152},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2016071/}
}
TY  - JOUR
AU  - Aytaç, Aysun
AU  - Berberler, Zeynep Nihan Odabaş
TI  - Network robustness and residual closeness
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 839
EP  - 847
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2016071/
DO  - 10.1051/ro/2016071
LA  - en
ID  - RO_2018__52_3_839_0
ER  - 
%0 Journal Article
%A Aytaç, Aysun
%A Berberler, Zeynep Nihan Odabaş
%T Network robustness and residual closeness
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 839-847
%V 52
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2016071/
%R 10.1051/ro/2016071
%G en
%F RO_2018__52_3_839_0
Aytaç, Aysun; Berberler, Zeynep Nihan Odabaş. Network robustness and residual closeness. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 839-847. doi : 10.1051/ro/2016071. http://www.numdam.org/articles/10.1051/ro/2016071/

[1] A. Aytaç and Z.N. Odabaş, Residual Closeness of Wheels and Related Networks. Int. J. Foundations Comput. Sci. 22 (2011) 1229–1240 | DOI | MR | Zbl

[2] C.A. Barefoot, R. Entringer and H. Swart, Vulnerability in graphs-a comparative survey. J. Combin. Math. Combin. Comput. 1 (1987) 13–22 | MR | Zbl

[3] C.A. Phillips and L.P. Swiler, A graph-based system for network vulnerability analysis, In New Security Paradigms Workshop (1998) 71–79

[4] C. Dangalchev, Residual Closeness in Networks. Physica A 365 (2006) 556–564 | DOI

[5] C. Dangalchev, Residual closeness and generalized closeness. Int. J. Found. Comput. Sci. 22 (2011) 1939–1948 | DOI | MR | Zbl

[6] C. Liu, W.B. Du and W.X. Wan, Particle Swarm Optimization with Scale-Free Interactions. PLoS One 9 (2014) 57–57

[7] D.B. West, Introduction to Graph Theory. Prentice Hall, NJ (2001) | MR | Zbl

[8] D. Kratsch, T. Kloks and H. Müller, Measuring the vulnerability for classes of intersection graphs. Discrete Appl. Math. 77 (1997) 259–270 | DOI | MR | Zbl

[9] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA (1990) | MR | Zbl

[10] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd Edition, Wadsworth. Monterey (1986) | MR | Zbl

[11] H.A. Jung, On a class of posets and the corresponding comparability graphs. J. Combinatorial Theory, Series B 24 (1978) 125–133 | DOI | MR | Zbl

[12] H. Frank and I.T. Frisch, Analysis and design of survivable networks. IEEE Trans. Commun. Tech. COM-18 567 (1970) | MR

[13] J.A. Bondy and U.S.R. Murty, Graph theory with applications. American Elsevier Publishing Co., Inc., New York (1976) | MR | Zbl

[14] L. Gou, B. Wei, R. Sadiq, Y. Sadiq and Y. Deng, Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks. PLoS One 11 (2016) e0146896 | DOI

[15] M.A. Saniee Monfared, M. Jalili and Z. Alipour, Topology and vulnerability of the Iranian power grid. Phys. A: Statist. Mech. Appl. 406 (2014) 24–33 | DOI

[16] M. Cozzens, D. Moazzami and S. Stueckle, Seventh International Conference on the Theory and Applications of Graphs. Wiley, New York (1995) 1111–1122 | MR | Zbl

[17] M.T. Melo, S. Nickel and F. Saldanha-Da-Gama, Facility location and supply chain management a review. Eur. J. Oper. Res. 196 (2009) 401–412 | DOI | MR | Zbl

[18] P. Holme, B.J. Kim, C.N. Yoon and S.K. Han, Attack vulnerability of complex networks. Phys. Rev. E 65 (2002) 056–109 | DOI

[19] Q. Tang, J. Zhao and T. Hu, Detecting Chaos Time Series via Complex Network Feature. Modern Phys. Lett. B 25 (2011) 1889–1896 | DOI

[20] S. Boccaletti, G. Bianconi, R. Criado, Ci Del Genio, J. Gómez-Gardeñes  and M. Romance, The structure and dynamics of multilayer networks. Phys. Repor. 544 (2014) 1–122 | DOI | MR

[21] S. Boccaletti, J. Buldú, R. Criado, J. Flores, V. Latora and J. Pello, Multiscale vulnerability of complex networks. Chaos 17 (2007) 043110 | DOI | Zbl

[22] T. Turacı and M. Okten, Vulnerability Of Mycielski Graphs Via Residual Closeness. Ars Combinatoria 118 (2015) 419–427 | MR | Zbl

[23] V. Aytaç and T. Turac I, Computing the Closeness Centrality in Some Graphs, Submitted.

[24] V. Chvàtal, Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973) 215–228 | DOI | MR | Zbl

[25] W.B. Du, Z.X. Wu and K.Q. Cai, Effective usage of shortest paths promotes transportation efficiency on scale-free networks. Phys. A Statist. Mech. Appl. 392 (2013) 3505–3512 | DOI | MR | Zbl

[26] X. Deng, Y. Hu, Y. Deng and S. Mahadevan, Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 41 (2014) 156–167 | DOI

[27] X. Qi, Z.G. Shao, J. Qi and L. Yang, Efficiency Dynamics on Scale-Free Networks with Communities. Modern Phys. Lett. B 24 (2010) 1549–1557 | DOI | Zbl

[28] Y. Deng, A Threat Assessment Model under Uncertain Environment. Math. Problems Eng. 2015 (2015) 878024 | DOI

[29] Y. Deng, W. Jiang and R. Sadiq, Modeling contaminant intrusion in water distribution networks: a new similarity-based DST method. Expert Syst. Appl. 38 (2011) 571–578 | DOI

[30] Y. Deng, Y. Liu and D. Zhou, An Improved Genetic Algorithm with Initial Population Strategy for Symmetric TSP. Math. Problems Eng. 2015 (2015) 212794 | DOI

[31] Y. Gao, W. Du and G. Yan, Selectively-informed particle swarm optimization. Sci. Rep. 5 (2015) 9295 | DOI

[32] Z.N. Odabaş and A. Aytaç, Residual closeness in cycles and related networks. Fundam. Inform. 124 (2013) 297–307 | DOI | MR | Zbl

[33] Z. Wang, L. Wang and M. Perc, Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89 (2014) 052813 | DOI

[34] Z. Wang, X. Zhu and J.J. Arenzon, Cooperation and age structure in spatial games. Phys. Rev. E 85 (2012) 011149 | DOI

Cité par Sources :