Hydrological time series forecasting play a crucial role in the Brazilian Power System since most of the power generated comes from hydroelectric power plants. A minor improvement in the predictive ability of water inflows time series might lead both to: (i) lower costs to final consumers; and (ii) higher power reliability. This paper explores Periodic Gamma Autoregressive Models (PGAR) to model brazilian water inflows time series. This type of time series has some features which seem to be more adaptable to Gamma models, like nonnegative random values and asymmetric pattern. The main purpose of this study is to compare periodic Normal and Lognormal models to PGAR. The results suggest that: (i) both Gamma and Lognormal models perform better than Normal model; and (ii) the Gamma model is a good alternative to the Lognormal model.
Accepté le :
DOI : 10.1051/ro/2016035
Mots clés : Periodic gamma autoregressive models, time series analysis, water resources management
@article{RO_2017__51_2_469_0, author = {Braga, Diogo and Calmon, Wilson}, title = {Periodic {Gamma} {Autoregressive} {Model:} {An} application to the {Brazilian} hydroelectric system}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {469--483}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/ro/2016035}, zbl = {1368.62299}, mrnumber = {3657435}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2016035/} }
TY - JOUR AU - Braga, Diogo AU - Calmon, Wilson TI - Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 469 EP - 483 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2016035/ DO - 10.1051/ro/2016035 LA - en ID - RO_2017__51_2_469_0 ER -
%0 Journal Article %A Braga, Diogo %A Calmon, Wilson %T Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 469-483 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2016035/ %R 10.1051/ro/2016035 %G en %F RO_2017__51_2_469_0
Braga, Diogo; Calmon, Wilson. Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 469-483. doi : 10.1051/ro/2016035. http://www.numdam.org/articles/10.1051/ro/2016035/
A New Look at the Statistical Model Identification. IEEE Trans. Automat. Control 19 (1974) 716–723. | DOI | MR | Zbl
,The Distributed Lag Between Capital Appropriations and Expenditures. Econometrica 33 (1965) 178–196. | DOI
,Aquisição de Energia no Mercado Cativo Brasileiro: Simulações dos Efeitos da Regulação sobre o Risco das Distribuidoras. Pesquisa Operacional 29 (2009) 303–322. | DOI
, and ,B. Bezerra, L.A. Barroso, M. Brito, F. Porrua, B. Flach and M.V. Pereira, Measuring the Hydroelectric Regularization Capacity of the Brazilian Hydrothermal System. Power and Energy Society General Meeting, Minneapolis (2010) 1–7.
An Analysis of Transformation. J. R. Stat. Soc. Ser. B 26 (1964) 211–252. | MR | Zbl
and ,Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Soc. 65 (1970) 1509–1526. | DOI | MR | Zbl
and ,P.J. Bickel and K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, vol I. Prectice-Hall (2006).
M. Brito, M. Vianna, B. Bezerra, M.V. Pereira and L.A. Barroso, Uma Metodologia para Analisar o Impacto das Usinas a Fio D’água na Capacidade de Regularização do Sistema Hidrotérmico Brasileiro, Anais do XX SNPTEE (2009).
P.J. Brocwell and R.A. Davis, Introduction to Time Series Forecasting. Texts in Statistics. Springer (2002). | MR | Zbl
D.R. Cox, Tests of Separate Families of Hypotheses. Vol. 1 of Proc. 4th Berkeley Symposium (1961) 105–123. | MR | Zbl
Further Results on Tests of Separate Families of Hypotheses. J. R. Stat. Soc., Ser. B 24 (1962) 406–424. | MR | Zbl
G. Claeskens and N.L. Hjort, Model Selection and Model Averaging, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2008). | MR | Zbl
Modelos de Previsão Hidrólogica Aplicados ao Planejamento de Operações do Sistema Elétrico Brasileiro, Revista Brasileira de Recursos Hídricos 12 (2007) 21–30. | DOI
, and ,R. Davidson and J.G. MacKinnon, Econometric Theory and Methods. Oxford University Press (2004).
Periodic Gamma Autoregressive Process for Operational Hydrology. Water Resources Research 22 (1986) 1385–1396. | DOI
and ,P.H. Franses and R. Paap, Periodic Time Series Models. Advanced Texts in Econometrics. Oxford (2004). | MR | Zbl
First-order Autoregressive Gamma Sequences and Point Process. Adv. Appl. Probab. 12 (1980) 727–745. | DOI | MR | Zbl
and ,Testing the Restrictions of the Almon Lag Technique. J. Am. Stat. Assoc. 70 (1975) 105–108. | DOI | Zbl
and ,K.W. Hipel and A.I. McLeod, Time Series Modelling of Water Resources and Environmental Systems. Developments in Water Science. Elsevier (1994).
The Innovation Distribution of a Gamma Distributed Autoregressive Process. Scand. J. Stat. 9 (1982) 234–236. | Zbl
,P. McCullagh and J. Nelder, Generalized Linear Models. Monographs on Statistics and Applied Probability. Chapman & Hall (1989). | MR | Zbl
Diagnostic Checking of Periodic Autoregressive Models with Application. J. Time Series Anal. 15 (1994) 221–233. | DOI | MR | Zbl
,Calculation of the Residual Sum of Squares for All Possible Regressions. Technometrics 14 (1972) 317–325. | DOI | Zbl
and ,Autocorrelation Structure of Monthly Streamflows. Water Resour. Res. 10 (1974) 737–744. | DOI
and ,Forecasting Monthly Riverflow Time Series. Int. J. Forecast. 1 (1986) 179–190. | DOI
, and ,Empirical Comparisons of Some Tests of Separate Families of Hypothesis. Metrika 25 (1978) 219–234. | DOI | Zbl
,Testes para Discriminar entre as Distribuições Lognormal, Gama e Weibull. J. Inter.–An. Stat. Inst. 33 (1979) 41–46. | MR
,Choice of a Survival Model for Patients with Brain Tumour. Metrika 28 (1981) 53–61. | DOI | MR | Zbl
,Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach. Water Resour. Res. 21 (1985) 779–792. | DOI
and ,M.H. Pesaran and M. Weeks, Non-nested Hypothesis Testing: An Overview, in Companion to Theoretical Econometrics, edited by B.H. Baltagi. Basil Blackwell, Oxford (2001). | MR
J.D. Salas, J.W. Delleur, V. Yevjevich and W.L. Lane, Applied Modelling of Hydrological Series. Water Resources Publications (1980).
R.S. Tsay, Analysis of Financial Time Series. Wiley, 3rd edition (2010). | MR | Zbl
Estimação Conjunta dos Parâmetros de um Modelo Multivariado Contemporâneo Periódico Auto-Regressivo − PAR(P). Rev. Brasileira de Recursos Hídricos 3 (1998) 5–17.
, and ,Time-reversibility of Linear Stochastic Processes. J. Appl. Probab. 12 (1975) 831–836. | DOI | MR | Zbl
,Cité par Sources :