Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 469-483.

Hydrological time series forecasting play a crucial role in the Brazilian Power System since most of the power generated comes from hydroelectric power plants. A minor improvement in the predictive ability of water inflows time series might lead both to: (i) lower costs to final consumers; and (ii) higher power reliability. This paper explores Periodic Gamma Autoregressive Models (PGAR) to model brazilian water inflows time series. This type of time series has some features which seem to be more adaptable to Gamma models, like nonnegative random values and asymmetric pattern. The main purpose of this study is to compare periodic Normal and Lognormal models to PGAR. The results suggest that: (i) both Gamma and Lognormal models perform better than Normal model; and (ii) the Gamma model is a good alternative to the Lognormal model.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2016035
Classification : 62-01, 62M10, 62P12
Mots-clés : Periodic gamma autoregressive models, time series analysis, water resources management
Braga, Diogo 1, 2 ; Calmon, Wilson 2

1 Departement of system Engineering and Computer Science, Federal University of Rio de Janeiro, Brazil.
2 Department of Economics, Federal University Fluminense, Niterói, RT, Brazil.
@article{RO_2017__51_2_469_0,
     author = {Braga, Diogo and Calmon, Wilson},
     title = {Periodic {Gamma} {Autoregressive} {Model:} {An} application to the {Brazilian} hydroelectric system},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {469--483},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/ro/2016035},
     zbl = {1368.62299},
     mrnumber = {3657435},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2016035/}
}
TY  - JOUR
AU  - Braga, Diogo
AU  - Calmon, Wilson
TI  - Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 469
EP  - 483
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2016035/
DO  - 10.1051/ro/2016035
LA  - en
ID  - RO_2017__51_2_469_0
ER  - 
%0 Journal Article
%A Braga, Diogo
%A Calmon, Wilson
%T Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 469-483
%V 51
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2016035/
%R 10.1051/ro/2016035
%G en
%F RO_2017__51_2_469_0
Braga, Diogo; Calmon, Wilson. Periodic Gamma Autoregressive Model: An application to the Brazilian hydroelectric system. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 469-483. doi : 10.1051/ro/2016035. http://www.numdam.org/articles/10.1051/ro/2016035/

H. Akaike, A New Look at the Statistical Model Identification. IEEE Trans. Automat. Control 19 (1974) 716–723. | DOI | MR | Zbl

S. Almon, The Distributed Lag Between Capital Appropriations and Expenditures. Econometrica 33 (1965) 178–196. | DOI

M. Barros, F.M. Mello and R.C. Souza, Aquisição de Energia no Mercado Cativo Brasileiro: Simulações dos Efeitos da Regulação sobre o Risco das Distribuidoras. Pesquisa Operacional 29 (2009) 303–322. | DOI

B. Bezerra, L.A. Barroso, M. Brito, F. Porrua, B. Flach and M.V. Pereira, Measuring the Hydroelectric Regularization Capacity of the Brazilian Hydrothermal System. Power and Energy Society General Meeting, Minneapolis (2010) 1–7.

G.E.P. Box and D.R. Cox, An Analysis of Transformation. J. R. Stat. Soc. Ser. B 26 (1964) 211–252. | MR | Zbl

G.E.P. Box and D.A. Pierce, Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Soc. 65 (1970) 1509–1526. | DOI | MR | Zbl

P.J. Bickel and K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, vol I. Prectice-Hall (2006).

M. Brito, M. Vianna, B. Bezerra, M.V. Pereira and L.A. Barroso, Uma Metodologia para Analisar o Impacto das Usinas a Fio D’água na Capacidade de Regularização do Sistema Hidrotérmico Brasileiro, Anais do XX SNPTEE (2009).

P.J. Brocwell and R.A. Davis, Introduction to Time Series Forecasting. Texts in Statistics. Springer (2002). | MR | Zbl

D.R. Cox, Tests of Separate Families of Hypotheses. Vol. 1 of Proc. 4th Berkeley Symposium (1961) 105–123. | MR | Zbl

D.R. Cox, Further Results on Tests of Separate Families of Hypotheses. J. R. Stat. Soc., Ser. B 24 (1962) 406–424. | MR | Zbl

G. Claeskens and N.L. Hjort, Model Selection and Model Averaging, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2008). | MR | Zbl

F.S. Costa, M.E.P. Maceira and J.M. Damazio, Modelos de Previsão Hidrólogica Aplicados ao Planejamento de Operações do Sistema Elétrico Brasileiro, Revista Brasileira de Recursos Hídricos 12 (2007) 21–30. | DOI

R. Davidson and J.G. MacKinnon, Econometric Theory and Methods. Oxford University Press (2004).

B. Fernandez and J.D. Salas, Periodic Gamma Autoregressive Process for Operational Hydrology. Water Resources Research 22 (1986) 1385–1396. | DOI

P.H. Franses and R. Paap, Periodic Time Series Models. Advanced Texts in Econometrics. Oxford (2004). | MR | Zbl

D.P. Gaver and P.A.W. Lewis, First-order Autoregressive Gamma Sequences and Point Process. Adv. Appl. Probab. 12 (1980) 727–745. | DOI | MR | Zbl

L.G. Godfrey and D.S. Poskitt, Testing the Restrictions of the Almon Lag Technique. J. Am. Stat. Assoc. 70 (1975) 105–108. | DOI | Zbl

K.W. Hipel and A.I. McLeod, Time Series Modelling of Water Resources and Environmental Systems. Developments in Water Science. Elsevier (1994).

A.J. Lawrence, The Innovation Distribution of a Gamma Distributed Autoregressive Process. Scand. J. Stat. 9 (1982) 234–236. | Zbl

P. McCullagh and J. Nelder, Generalized Linear Models. Monographs on Statistics and Applied Probability. Chapman & Hall (1989). | MR | Zbl

A.I. Mcleod, Diagnostic Checking of Periodic Autoregressive Models with Application. J. Time Series Anal. 15 (1994) 221–233. | DOI | MR | Zbl

J.A. Morgan and J.F Tatar, Calculation of the Residual Sum of Squares for All Possible Regressions. Technometrics 14 (1972) 317–325. | DOI | Zbl

M.E. Moss and M.C. Bryson, Autocorrelation Structure of Monthly Streamflows. Water Resour. Res. 10 (1974) 737–744. | DOI

D.J. Noakes, A.I. Mcleod and K.W. Hipel, Forecasting Monthly Riverflow Time Series. Int. J. Forecast. 1 (1986) 179–190. | DOI

B. De B. Pereira, Empirical Comparisons of Some Tests of Separate Families of Hypothesis. Metrika 25 (1978) 219–234. | DOI | Zbl

B. De B. Pereira, Testes para Discriminar entre as Distribuições Lognormal, Gama e Weibull. J. Inter.–An. Stat. Inst. 33 (1979) 41–46. | MR

B. De B. Pereira, Choice of a Survival Model for Patients with Brain Tumour. Metrika 28 (1981) 53–61. | DOI | MR | Zbl

M.V.F. Pereira and L.M.V.G. Pinto, Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach. Water Resour. Res. 21 (1985) 779–792. | DOI

M.H. Pesaran and M. Weeks, Non-nested Hypothesis Testing: An Overview, in Companion to Theoretical Econometrics, edited by B.H. Baltagi. Basil Blackwell, Oxford (2001). | MR

J.D. Salas, J.W. Delleur, V. Yevjevich and W.L. Lane, Applied Modelling of Hydrological Series. Water Resources Publications (1980).

R.S. Tsay, Analysis of Financial Time Series. Wiley, 3rd edition (2010). | MR | Zbl

A.M. Vieira, B. De B. Pereira and P.R.H. Sales, Estimação Conjunta dos Parâmetros de um Modelo Multivariado Contemporâneo Periódico Auto-Regressivo − PAR(P). Rev. Brasileira de Recursos Hídricos 3 (1998) 5–17.

G. Weiss, Time-reversibility of Linear Stochastic Processes. J. Appl. Probab. 12 (1975) 831–836. | DOI | MR | Zbl

Cité par Sources :