Descent condition is a crucial factor to establish the global convergence of nonlinear conjugate gradient method. In this paper, we propose some modified Yabe–Takano conjugate gradient methods, in which the corresponding search directions always satisfy the sufficient descent property independently of the convexity of the objective function. Differently from the existent methods, a new update strategy in constructing the search direction is proposed to establish the global convergence of the presented methods for the general nonconvex objective function. Numerical results illustrate that our methods can efficiently solve the test problems and therefore is promising.
Mots-clés : Yabe–Takano conjugate gradient method, global convergence, sufficient descent condition, conjugacy condition, numerical comparison
@article{RO_2017__51_1_67_0, author = {Dong, Xiao Liang and Li, Wei Jun and He, Yu Bo}, title = {Some modified {Yabe{\textendash}Takano} conjugate gradient methods with sufficient descent condition}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {67--77}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/ro/2016028}, zbl = {1358.49027}, mrnumber = {3589264}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2016028/} }
TY - JOUR AU - Dong, Xiao Liang AU - Li, Wei Jun AU - He, Yu Bo TI - Some modified Yabe–Takano conjugate gradient methods with sufficient descent condition JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 67 EP - 77 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2016028/ DO - 10.1051/ro/2016028 LA - en ID - RO_2017__51_1_67_0 ER -
%0 Journal Article %A Dong, Xiao Liang %A Li, Wei Jun %A He, Yu Bo %T Some modified Yabe–Takano conjugate gradient methods with sufficient descent condition %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 67-77 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2016028/ %R 10.1051/ro/2016028 %G en %F RO_2017__51_1_67_0
Dong, Xiao Liang; Li, Wei Jun; He, Yu Bo. Some modified Yabe–Takano conjugate gradient methods with sufficient descent condition. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 1, pp. 67-77. doi : 10.1051/ro/2016028. http://www.numdam.org/articles/10.1051/ro/2016028/
Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34 (2011) 319–330. | MR | Zbl
,A simple three–term conjugate gradient algorithm for unconstrained optimization. J. Comput. Appl. Math. 241 (2013) 19–29. | DOI | MR | Zbl
,On three–term conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 219 (2013) 6316–6327. | MR | Zbl
,Two new conjugate gradient methods based on modified secant equations. J. Comput. Appl. Math. 234 (2010) 1374–1386. | DOI | MR | Zbl
, and ,CUTE: constrained and unconstrained testing environments, ACM Trans. Math. Software 21 (1995) 123–160. | DOI | Zbl
, and , ,An active set modified Polak–Ribière–Polyak method for large–scale nonlinear bound constrained optimization. J. Optim. Theory Appl. 155 (2012) 1084–1094. | DOI | MR | Zbl
and ,A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23 (2013) 296–320. | DOI | MR | Zbl
and ,A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. | DOI | MR | Zbl
and ,New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. | DOI | MR | Zbl
and .Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91 (2002) 201–213. | DOI | MR | Zbl
and ,Comment on “A new three–term conjugate gradient method for unconstrained problem”. Numer. Algor. 72 (2016) 173–179. | DOI | MR | Zbl
,A self–adjusting conjugate gradient method with sufficient descent condition and conjugacy condition. J. Optim. Theory Appl. 165 (2015) 225–241. | DOI | MR | Zbl
, and ,New version of three–term conjugate gradient method based on spectral scaling conjugacy condition that generates descent direction. Appl.Math. Comput. 239 (2015) 1606–1617. | MR
, and ,X. Dong, H. Liu, Y. He, S. Babaie-Kafakid and R. Ghanbari, A new three-term conjugate gradient method with descent direction for unconstrained optimization.Math. Model. Anal. (to appear). | MR
Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence. Optim. Lett. 9 (2015) 1421–1432. | DOI | MR | Zbl
, , , and ,A modified Hestenes–Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition. J. Comput. Appl. Math. 281 (2015) 239–249. | DOI | MR | Zbl
, , and ,R. Fletcher, Practical methods of optimization, John Wiley and Sons (2013). | MR | Zbl
Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. | DOI | MR | Zbl
and ,Multi-step quasi-Newton methods for optimization. J. Comput. Appl. Math. 50 (1994) 305–323. | DOI | MR | Zbl
and ,Using function–values in Multi-step quasi-Newton methods. J. Comput. Appl. Math. 66 (1996) 201–211. | DOI | MR | Zbl
and ,Multi-step nonlinear conjugate gradient methods for unconstrained minimization. Comput. Optim. Appl. 40 (2008) 191–216. | DOI | MR | Zbl
, , and ,Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. | DOI | MR | Zbl
and ,A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005) 170–192. | DOI | MR | Zbl
and ,A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006) 35–58. | MR | Zbl
and ,Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952) 409–436. | DOI | MR | Zbl
and ,A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129 (2001) 15–35. | DOI | MR | Zbl
and ,On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11 (2001) 1054–1064. | DOI | MR | Zbl
and ,and Z.Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 202 (2007) 523–539. | DOI | MR | Zbl
, ,Efficient generalized conjugate gradient algorithms. Part 1: Theory, J. Optim. Theory Appl. 69 (1991) 129–137. | MR | Zbl
and ,Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization. J. Comput. Appl. Math. 236 (2012) 4303–4317. | DOI | MR | Zbl
and .A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21 (2011) 212–230. | DOI | MR | Zbl
, and ,New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175 (2006) 1156–1188. | MR | Zbl
, and ,Characteristics of investors’ risk preference for stock markets. Econ. Comput. Econ. Cybern. Stud. Res. 3 (2014) 235–254.
, , and ,Convergence conditions for ascent methods. SIAM Rev. 11 (1969) 226–235. | DOI | MR | Zbl
,Global convergence properties of nonlinear conjugate gradient methods with modified secant condition. Comput. Optim. Appl. 28 (2004) 203–225. | DOI | MR | Zbl
and ,A descent spectral conjugate gradient method for inpulse noise removal. Appl. Math. Lett. 2 (2010) 555–560. | DOI | MR | Zbl
and ,A modified BFGS algorithm for unconstrained optimization. IMA J. Numer. Anal. 11 (1991) 325–332. | DOI | MR | Zbl
,Non-quasi-Newton updates for unconstrained optimization. J. Comput. Math. 13 (1995) 95–107. | MR | Zbl
and ,New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167. | DOI | MR | Zbl
, and ,Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J. Comput. Appl. Math. 137 (2001) 269–278. | DOI | MR | Zbl
and ,A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 6 (2006) 629–640. | DOI | MR | Zbl
, and ,Sufficient descent conjugate gradient methods for large-scale optimization problems. Int. J. Comput Math. 88 (2011) 3436–3447. | DOI | MR | Zbl
, and ,A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim. Methods Softw. 21 (2006) 707–714. | DOI | MR | Zbl
and ,Cité par Sources :