A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 1, pp. 285-297.

This paper deals with developing an efficient algorithm for solving the fully fuzzy linear fractional programming problem. To this end, we construct a new method which is obtained from combination of Charnes−Cooper scheme and the multi-objective linear programming problem. Furthermore, the application of the proposed method in real life problems is presented and this method is compared with some existing methods. The numerical experiments and comparative results presented promising results to find the fuzzy optimal solution.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2016022
Classification : 90C70, 90C90, 90C05, 90C08
Mots clés : Fully fuzzy linear programming, linear fractional programming, linear programming, multi-objective linear programming, triangular fuzzy number
Das, Sapan Kumar 1 ; Mandal, Tarni 1 ; Edalatpanah, S. A. 2

1 Department of Mathematics, National Institute of Technology Jamshedpur, 831014 Jamshedpur India.
2 Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.
@article{RO_2017__51_1_285_0,
     author = {Das, Sapan Kumar and Mandal, Tarni and Edalatpanah, S. A.},
     title = {A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {285--297},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/ro/2016022},
     mrnumber = {3605905},
     zbl = {1358.90166},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2016022/}
}
TY  - JOUR
AU  - Das, Sapan Kumar
AU  - Mandal, Tarni
AU  - Edalatpanah, S. A.
TI  - A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 285
EP  - 297
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2016022/
DO  - 10.1051/ro/2016022
LA  - en
ID  - RO_2017__51_1_285_0
ER  - 
%0 Journal Article
%A Das, Sapan Kumar
%A Mandal, Tarni
%A Edalatpanah, S. A.
%T A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 285-297
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2016022/
%R 10.1051/ro/2016022
%G en
%F RO_2017__51_1_285_0
Das, Sapan Kumar; Mandal, Tarni; Edalatpanah, S. A. A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 1, pp. 285-297. doi : 10.1051/ro/2016022. http://www.numdam.org/articles/10.1051/ro/2016022/

J.J. Buckley and T. Feuring, Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst. 109 (2000) 35–53. | DOI | MR | Zbl

M. Chakraborty and S. Gupta, Fuzzy mathematical programming for multi objective linear fractional programming problem. Fuzzy Sets Syst. 125 (2002) 335–342. | DOI | MR | Zbl

A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logist. Q. 9 (1962) 181–186. | DOI | MR | Zbl

D. Dutta, R.N. Tiwari and J.R. Rao, Multiple objective linear fractional programming- A fuzzy set theoretic approach. Fuzzy Sets Syst. 52 (1992) 39–45. | DOI | MR | Zbl

R. Ezzati, E. Khorram and R. Enayati, A new algorithm to solve fully fuzzy linear programming problems using MOLP problem. Appl. Math. Model. 39 (2015) 3183–3193. | DOI | MR | Zbl

B. Pop and I.M. Stancu-Minasian, A method of solving fully fuzzified linear fractional programming problems. J. Appl. Math. Comput. 27 (2008) 227–242. | DOI | MR | Zbl

M. Sakawa and H. Yano, An interactive fuzzy satisficing method for multiobjective linear fractional programming problems. Fuzzy Sets Syst. 28 (1988) 129–144. | DOI | MR | Zbl

M. Sakawa, H. Yano and J. Takahashi, Pareto optimality for multiobjective linear fractional programming problems with fuzzy parameters. Inf. Sci. 63 (1992) 33–53. | DOI | MR | Zbl

I.M. Stancu-Minasian and B. Pop, On a fuzzy set approach to solving multiple objective linear fractional programming problem. Fuzzy Sets Syst. 134 (2003) 397–405. | DOI | MR | Zbl

B. Stanojevic and I.M. Stancu-Minasian, On solving fuzzified linear fractional programs. Adv. Model. Optim. 11 (2009) 503–523. | MR

B. Stanojevic and I.M. Stancu-Minasian, Evaluating fuzzy inequalities and solving fully fuzzified linear fractional programs. Yugoslav J. Oper. Res. 1 (2012) 41–50. | DOI | MR | Zbl

M.D. Toksari, Taylor series approach to fuzzy multi objective linear fractional programming. Inf. Sci. 178 (2008) 1189–1204. | DOI | MR | Zbl

L.A. Zadeh, Fuzzy Sets. Inf. Control 8 (1965) 338–353. | DOI | MR | Zbl

Cité par Sources :