The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with additional disjoint multiple-choice constraints. Gens and Levner presented for this problem an approximate binary search algorithm with a worst case ratio of . We present an improved approximate binary search algorithm with a ratio of and a running time , where is the number of items, the number of classes, and a positive integer. We then extend our algorithm to make it also applicable to the Multiple-Choice Multidimensional Knapsack Problem with dimension .
Mots clés : Multiple-Choice Knapsack Problem (MCKP), Approximate binary search algorithm, Worst-case performance ratio, Multiple-choice Multi-dimensional Knapsack Problem (MMKP)
@article{RO_2016__50_4-5_995_0, author = {He, Cheng and Leung, Joseph Y-T. and Lee, Kangbok and Pinedo, Michael L.}, title = {An improved binary search algorithm for the {Multiple-Choice} {Knapsack} {Problem}}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {995--1001}, publisher = {EDP-Sciences}, volume = {50}, number = {4-5}, year = {2016}, doi = {10.1051/ro/2015061}, mrnumber = {3570544}, zbl = {1401.90191}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2015061/} }
TY - JOUR AU - He, Cheng AU - Leung, Joseph Y-T. AU - Lee, Kangbok AU - Pinedo, Michael L. TI - An improved binary search algorithm for the Multiple-Choice Knapsack Problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 995 EP - 1001 VL - 50 IS - 4-5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2015061/ DO - 10.1051/ro/2015061 LA - en ID - RO_2016__50_4-5_995_0 ER -
%0 Journal Article %A He, Cheng %A Leung, Joseph Y-T. %A Lee, Kangbok %A Pinedo, Michael L. %T An improved binary search algorithm for the Multiple-Choice Knapsack Problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 995-1001 %V 50 %N 4-5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2015061/ %R 10.1051/ro/2015061 %G en %F RO_2016__50_4-5_995_0
He, Cheng; Leung, Joseph Y-T.; Lee, Kangbok; Pinedo, Michael L. An improved binary search algorithm for the Multiple-Choice Knapsack Problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 4-5, pp. 995-1001. doi : 10.1051/ro/2015061. http://www.numdam.org/articles/10.1051/ro/2015061/
A computational study of a multiple-choice knapsack algorithm. ACM Trans. Math. Software 9 (1983) 184–198. | DOI | MR | Zbl
, , and ,A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem. Eur. J. Oper. Res. 239 (2014) 313–322. | DOI | MR | Zbl
and ,Approximation algorithms for them-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses. Eur. J. Operat. Res. 15 (1984) 100–109. | DOI | MR | Zbl
and ,An approximate binary search algorithm for the multiple-choice knapsack problem. Inf. Process. Lett. 67 (1998) 261–265. | DOI | MR | Zbl
and ,H. Kellerer, U. Pferschy and D. Pisinger, Knapsack problems.Springer (2004). | MR | Zbl
Fast Approximation Algorithms for Knapsack Problems. Math. Oper. Res. 4 (1979) 339–356. | DOI | MR | Zbl
,A note on approximation schemes for multidimensional knapsack problems. Math. Oper. Res. 9 (1984) 244–247. | DOI | MR | Zbl
and ,Vector bin packing with multiple-choice. Discrete Appl. Math. 160 (2012) 1591–1600. | DOI | MR | Zbl
and ,A minimal algorithm for the Multiple-Choice Knapsack Problem. Eur. J. Oper. Res. 83 (1995) 394–410. | DOI | Zbl
,Cité par Sources :