In a previous work we presented six facet-inducing families of valid inequalities for the polytope associated to an integer programming formulation of the acyclic coloring problem. In this work we study their disjunctive rank, as defined by [E. Balas, S. Ceria and G. Cornuéjols, Math. Program. 58 (1993) 295–324]. We also propose to study a dual concept, which we call the disjunctive anti-rank of a valid inequality.
Accepté le :
DOI : 10.1051/ro/2015053
Mots-clés : Acyclic coloring, disjunctive rank
@article{RO_2016__50_3_627_0, author = {Braga, M\'onica and Marenco, Javier}, title = {Exploring the disjunctive rank of some facet-inducing inequalities of the acyclic coloring polytope}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {627--644}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/ro/2015053}, zbl = {1378.90058}, mrnumber = {3538844}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2015053/} }
TY - JOUR AU - Braga, Mónica AU - Marenco, Javier TI - Exploring the disjunctive rank of some facet-inducing inequalities of the acyclic coloring polytope JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 627 EP - 644 VL - 50 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2015053/ DO - 10.1051/ro/2015053 LA - en ID - RO_2016__50_3_627_0 ER -
%0 Journal Article %A Braga, Mónica %A Marenco, Javier %T Exploring the disjunctive rank of some facet-inducing inequalities of the acyclic coloring polytope %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 627-644 %V 50 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2015053/ %R 10.1051/ro/2015053 %G en %F RO_2016__50_3_627_0
Braga, Mónica; Marenco, Javier. Exploring the disjunctive rank of some facet-inducing inequalities of the acyclic coloring polytope. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 3, pp. 627-644. doi : 10.1051/ro/2015053. http://www.numdam.org/articles/10.1051/ro/2015053/
N. Aguilera, S. Bianchi and G. Nasini, Relaciones entre los rangos de las facetas de problemas asociados a matching. Proc. of the XVIII JAIIO (1999) 10–21.
Acyclic colouring of graphs. Random Struct. and Algorithms 2 (1991) 277–288. | DOI | MR | Zbl
, and ,On the polyhedral lift-and-project methods and the fractional stable set polytope. Discrete Optim. 6 (2009) 206–213. | DOI | MR | Zbl
and ,Y. Au and L. Tunçel, A comprehensive analysis of polyhedral lift-and-project methods. Manuscript (2013).
Lift-and-Project Cutting Plane Algorithm for Mixed 0 - 1 Programs. Math. Program. 58 (1993) 295–324. | DOI | MR | Zbl
, and ,On acyclic colorings of planar graphs. Discrete Math. 25 (1979) 211–236. | DOI | MR | Zbl
,Acyclic colourings of planar graphs with large girth. J. London Math. Soc. 2 (1999) 344-352. | DOI | MR | Zbl
, and ,Acyclic colouring of 1-planar graphs. Discrete Appl. Math. 114 (2001) 29–41. | DOI | MR | Zbl
, , and ,Disjunctive ranks and anti-ranks of some facet-inducing inequalities of the acyclic coloring polytope. Electron. Notes Discrete Math. 37 (2011) 213–218. | DOI | MR | Zbl
and ,A polyhedral study of the acyclic coloring problem. Discrete Appl. Math. 160 (2012) 2606–2617. | DOI | MR | Zbl
, and ,Every 4-valent graph has an acyclic 5-coloring. Soobsc Akad. Nauk Gruzin SSR 93 (1979) 21–24. | MR | Zbl
,The cyclic coloring problem and estimation of sparse Hessian matrices. SIAM J. Alg. Disc. Meth. 7 (1986) 221–235. | DOI | MR | Zbl
and ,Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal. 20 (1983) 187–209. | DOI | MR | Zbl
and ,Acyclic Coloring of Graphs of Maximum Degree Five: Nine Colors are Enough. Inf. Process. Lett. 105 (2008) 65–72. | DOI | MR | Zbl
and ,What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47 (2005) 629–705. | DOI | MR | Zbl
, and .New Acyclic and Star Coloring Algorithms with Application to Computing Hessians. SIAM J. Sci. Comput. 29 (2007) 1042–1072. | DOI | MR | Zbl
, , and ,Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation. INFORMS J. Comput. 21 (2009) 209–223. | DOI | MR | Zbl
, , and ,Acylic colorings of planar graphs. Israel J. Math. 14 (1973) 390-408. | DOI | MR | Zbl
,J. Lasserre, An explicit exact SDP relaxation for nonlinear 0-1 programs. Vol. 2081 of Lect. Notes Comput. Sci. (2001) 293–303. | MR | Zbl
A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28 (2003) 470–496. | DOI | MR | Zbl
,On the relationship between disjunctive relaxations and minors in packing and covering problems. Revista de la Unión Matemática Argentina 46 (2005) 11–22. | MR | Zbl
and ,I. Loiseau, I. Méndez Díaz and G. Nasini, Determinación del rango disyuntivo de facetas del problema de ordenación lineal. Proc. of the XXII JAIIO (1993) 124–130.
Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1 (1991) 166–190. | DOI | MR | Zbl
and ,C. Mathieu and A. Sinclair, Sherali-Adams relaxations of the matching polytope. Proc. of STOC’09 (2009) 293–302. | MR | Zbl
I. Méndez Díaz and G. Nasini, El problema del ordenamiento lineal y el operador BCC. Proc. of the XVIII JAIIO (1999) 22–32.
T. Rothvoß, The Lasserre hierarchy in approximation algorithms. MAPSP 2013 tutorial (2013).
A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 (1990) 411–430. | DOI | MR | Zbl
and ,Cité par Sources :