A jointly constrained bilinear programming method for solving generalized Cournot–Pareto models
RAIRO - Operations Research - Recherche Opérationnelle, Tome 49 (2015) no. 5, pp. 845-864.

We propose a vector optimization approach to linear Cournot oligopolistic market equilibrium models where the strategy sets depend on each other. We use scalarization technique to find a Pareto efficient solution to the model by using a jointly constrained bilinear programming formulation. We then propose a decomposition branch-and-bound algorithm for globally solving the resulting bilinear problem. The subdivision takes place in one-dimensional intervals that enables solving the problem with relatively large sizes. Numerical experiments and results on randomly generated data show the efficiency of the proposed algorithm.

DOI : 10.1051/ro/2015031
Classification : 47J20, 49J40
Mots-clés : Generalized Cournot model, bilinear programming, branch-and-bound, Pareto solution
Van Quy, Nguyen 1

1 Academy of Finance, Hanoi, Vietnam
@article{RO_2015__49_5_845_0,
     author = {Van Quy, Nguyen},
     title = {A jointly constrained bilinear programming method for solving generalized {Cournot{\textendash}Pareto} models},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {845--864},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/ro/2015031},
     mrnumber = {3549616},
     zbl = {1338.91090},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro/2015031/}
}
TY  - JOUR
AU  - Van Quy, Nguyen
TI  - A jointly constrained bilinear programming method for solving generalized Cournot–Pareto models
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2015
SP  - 845
EP  - 864
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro/2015031/
DO  - 10.1051/ro/2015031
LA  - en
ID  - RO_2015__49_5_845_0
ER  - 
%0 Journal Article
%A Van Quy, Nguyen
%T A jointly constrained bilinear programming method for solving generalized Cournot–Pareto models
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2015
%P 845-864
%V 49
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro/2015031/
%R 10.1051/ro/2015031
%G en
%F RO_2015__49_5_845_0
Van Quy, Nguyen. A jointly constrained bilinear programming method for solving generalized Cournot–Pareto models. RAIRO - Operations Research - Recherche Opérationnelle, Tome 49 (2015) no. 5, pp. 845-864. doi : 10.1051/ro/2015031. http://www.numdam.org/articles/10.1051/ro/2015031/

F.A. Al-Khayyal, Jointly constrained bilinear programs and related problems: An overview. Comput. Math. Appl. 19 (1990) 53–62. | DOI | MR | Zbl

D. Aussel, R. Correa and M. Marechal, Gap functions for quasivariational inequalities and generalized Nash equilibrium problems. J. Optim. Theory Optim. 151 (2011) 474–488. | DOI | MR | Zbl

G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria. Eur. J. Oper. Res. 227 (2013) 1–11. | DOI | MR | Zbl

E. Blum and W. Oettli, From optimization and variational inequality to equilibrium problems. Princeton University Press, 1963. Math. Stud. 63 (1994) 127–149. | MR | Zbl

F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003). | MR | Zbl

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems. Ann. Oper. Res. 175 (2010) 177–211. | DOI | MR | Zbl

F. Facchinei, C. Kanzow and S. Sagratella, Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144 Ser. A (2014) 369–412. | DOI | MR | Zbl

M. Fukushima, A class of gap functions for quasi-variational inequlity problems. J. Ind. Manag. Optim. 3 (2007) 165–174. | DOI | MR | Zbl

M. Fukushima and J.S. Pang, Quasi-variational inequality, generalized Nash equilibria, and multi-leader-folower games. Comput. Manag. Sci. 2 (2005) 21–26. | DOI | MR | Zbl

R. Gupta and A. Mehra, Gap functions and error bounds for quasi-variational inequalities. J. Global Optim. 53 (2012) 737–748. | DOI | MR | Zbl

N. Harms, T. Hoheisel and C. Kanzow, On a smooth dual gap function for a class of quasi-variational inequalities. J. Optim. Theory Appl. 163 (2014) 413–438. | DOI | MR | Zbl

N. Harms, C. Kanzow and O. Stein, Smoothless properties of a regularized gap function for quasi-variational inequalities. Optim. Methods Softw 29 (2014) 720–750. | DOI | MR | Zbl

R. Horst and H. Tuy, Global Optimization, Deterministic Approach. Springer, Berlin (1990). | MR | Zbl

I. Konnov, Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001). | MR | Zbl

K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144 (2010) 511–531. | DOI | MR | Zbl

H.F. Murphy, H.D. Sherali and A.L. Soyster, A mathematical programming approach for determining oligopolistic market equilibrium. Math. Program. 24 (1982) 92–106. | DOI | MR | Zbl

L.D. Muu and W. Oettli, A method for minimizing a convex-concave function over a convex set. J. Optim. Theory Appl. 70 (1990) 377–384. | DOI | MR | Zbl

L.D. Muu and N.V. Quy, A global optimization method for solving convex quadratic bilevel programming problems. J. Global Optim. 26 (2003) 199–219. | DOI | MR | Zbl

L.D. Muu, V.H. Nguyen and N.V. Quy, On Nash−Cournot oligopolistic market models with concave cost functions. J. Global Optim. 41 (2007) 351–364 | DOI | MR | Zbl

D.T. Luc, Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, New York Berlin, Heidelberg (1989). | MR | Zbl

D.T. Luc, T.Q. Phong and M. Volle, Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems. SIAM J. Optim. 15 (2005) 987–1001. | DOI | MR | Zbl

A. Nagurney, Network Economics: A Variational Inequality Approach. Kluwer Academic Publishers (1993). | MR

H. Nikaido and K. Isoda, Note on non-cooperative convex games. Pacific J. Math. 5 (1955) 807–815. | DOI | MR | Zbl

T.D. Quoc and L.D. Muu, A splitting proximal point method for Nash–Cournot equilibrium models involving nonconvex cost functions. J. Nonlin. Convex Anal. 12 (2011) 519–534. | MR | Zbl

N.V. Quy, A vector optimization approach to Cournot oligopolistic market Models. Int. J. Optim.: Theory, Methods Appl. 1 (2009) 341–360. | MR | Zbl

J.J. Strodiot, T.T. V. Nguyen and V.H. Nguyen, A new class of hybrid extragradient algorithms for solving quasi- equilibrium problems. J. Global Optim. 56 (2013) 373–397. | DOI | MR | Zbl

P.L. Yu, Multiple − Criteria Decision Making: Concepts, Techniques and Extensions. Plenum Press, New York, London (1985). | MR | Zbl

Cité par Sources :