In this paper, we present an Uzawa-based heuristic that is adapted to certain type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale subsystems linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, for instance, power units, and one has to supply a stochastic power demand at each time step. We outline the framework of our approach and present promising numerical results on a simplified power management problem.
Mots clés : stochastic optimal control, decomposition methods, dynamic programming
@article{RO_2010__44_3_167_0, author = {Barty, Kengy and Carpentier, Pierre and Girardeau, Pierre}, title = {Decomposition of large-scale stochastic optimal control problems}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {167--183}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/ro/2010013}, mrnumber = {2762792}, zbl = {1204.93128}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2010013/} }
TY - JOUR AU - Barty, Kengy AU - Carpentier, Pierre AU - Girardeau, Pierre TI - Decomposition of large-scale stochastic optimal control problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2010 SP - 167 EP - 183 VL - 44 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2010013/ DO - 10.1051/ro/2010013 LA - en ID - RO_2010__44_3_167_0 ER -
%0 Journal Article %A Barty, Kengy %A Carpentier, Pierre %A Girardeau, Pierre %T Decomposition of large-scale stochastic optimal control problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2010 %P 167-183 %V 44 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2010013/ %R 10.1051/ro/2010013 %G en %F RO_2010__44_3_167_0
Barty, Kengy; Carpentier, Pierre; Girardeau, Pierre. Decomposition of large-scale stochastic optimal control problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 3, pp. 167-183. doi : 10.1051/ro/2010013. http://www.numdam.org/articles/10.1051/ro/2010013/
[1] Studies in linear and nonlinear programming. Stanford University Press (1958). | Zbl
, and ,[2] Sensitivity to σ-fields of information in stochastic allocation. Stoch. Stoch. Rep. 36 (1991) 41-63. | Zbl
,[3] Functional approximations and dynamic programming. Math. Tables Other Aides comput. 13 (1959) 247-251. | Zbl
and ,[4] Dynamic programming, Princeton University Press. New Jersey (1957). | Zbl
,[5] Dynamic programming and optimal control, 2nd edition, Vol. 1 & 2, Athena Scientific (2000). | Zbl
,[6] A stochastic gradient type algorithm for closed loop problems. Math. Program. (2007). | Zbl
, and ,[7] Solving multistage asset investment problems by the sample average approximation method. Math. Program. 108 (2006) 571-595. | Zbl
and ,[8] Neuro-Dynamic Programming, Athena Scientific (1996). | Zbl
and ,[9] Decomposition Coordination Algorithms for Stochastic Optimization. SIAM J. Control Optim. 28 (1990) 1372-1403. | Zbl
and ,[10] Auxiliary Problem Principle and decomposition of optimization problems. J. Optim. Theory Appl. (1980) 277-305. | Zbl
,[11] The theory of max-min. Springer, Berlin (1967).
,[12] The Linear Programming Approach to Approximate Dynamic Programming. Oper. Res. 51 (2003) 850-856. | Zbl
and ,[13] Convex analysis and variational problems. SIAM, Philadelphia (1999). | Zbl
and ,[14] A comparison of sample-based Stochastic Optimal Control methods. E-print available at: arXiv:1002.1812v1, 2010.
,[15] Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006) 511-525. | Zbl
, and ,[16] Stochastic decomposition. Kluwer, Dordrecht (1996). | Zbl
and ,[17] Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005) 245-256. | Zbl
,[18] Stochastic programming, Kluwer, Dordrecht (1995). | Zbl
,[19] On complexity of multistage stochastic programs. Oper. Res. Lett. 34 (2006) 1-8. | Zbl
,[20] Stochastic Programming, Elsevier, Amsterdam (2003). | Zbl
and (Eds.),[21] Approches variationnelles et autres contributions en optimisation stochastique, Thèse de doctorat, École Nationale des Ponts et Chaussées, 5 (2006). | Zbl
,[22] Optimal operation of multi-reservoir power systems with stochastic inflows. Water Resour. Res. 16 (1980) 275-283.
,[23] Feature-based methods for large scale dynamic programming. Mach. Lear. 22 (1996) 59-94. | Zbl
and ,Cité par Sources :