Linear prediction of long-range dependent time series
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 115-134.

We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last k terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as k tends to +. The second predictor is the finite linear least-squares predictor i.e. the projection of the forecast value on the last k observations. It is shown that these two predictors converge to the Wiener Kolmogorov predictor at the same rate k -1 .

DOI : 10.1051/ps:2008015
Classification : 62M20, 62M10
Mots-clés : Long-memory, linear model, autoregressive process, forecast error
@article{PS_2009__13__115_0,
     author = {Godet, Fanny},
     title = {Linear prediction of long-range dependent time series},
     journal = {ESAIM: Probability and Statistics},
     pages = {115--134},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2008015},
     mrnumber = {2502026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2008015/}
}
TY  - JOUR
AU  - Godet, Fanny
TI  - Linear prediction of long-range dependent time series
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 115
EP  - 134
VL  - 13
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2008015/
DO  - 10.1051/ps:2008015
LA  - en
ID  - PS_2009__13__115_0
ER  - 
%0 Journal Article
%A Godet, Fanny
%T Linear prediction of long-range dependent time series
%J ESAIM: Probability and Statistics
%D 2009
%P 115-134
%V 13
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2008015/
%R 10.1051/ps:2008015
%G en
%F PS_2009__13__115_0
Godet, Fanny. Linear prediction of long-range dependent time series. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 115-134. doi : 10.1051/ps:2008015. http://www.numdam.org/articles/10.1051/ps:2008015/

[1] J. Barkoulas and C.F. Baum, Long-memory forecasting of US monetary indices. J. Forecast. 25 (2006) 291-302. | MR

[2] R.J. Bhansali, Linear prediction by autoregressive model fitting in the time domain. Ann. Stat. 6 (1978) 224-231. | MR | Zbl

[3] R.J. Bhansali and P.S. Kokoszka, Prediction of long-memory time series: An overview. Estadística 53 No. 160-161 (2001) 41-96. | MR | Zbl

[4] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation (1987). | MR | Zbl

[5] P.J. Brockwell and R.A. Davis, Simple consistent estimation of the coefficients of a linear filter. Stochastic Process. Appl. (1988) 47-59. | MR | Zbl

[6] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer Series in Statistics (1991). | MR | Zbl

[7] N. Crato and B.K. Ray, Model selection and forecasting for long-range dependent processes. J. Forecast. 15 (1996) 107-125.

[8] C.W.J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 (1980) 15-29. | MR | Zbl

[9] H.L. Gray, N.-F. Zhang and W.A. Woodward, On generalized fractional processes. J. Time Ser. Anal. 10 (1989) 233-257. | MR | Zbl

[10] J.R.M. Hosking, Fractional differencing. Biometrika 68 (1981) 165-176. | MR | Zbl

[11] A. Inoue, Regularly varying correlation functions and KMO-Langevin equations. Hokkaido Math. J. 26 (1997) 457-482. | MR | Zbl

[12] A. Inoue, Asymptotics for the partial autocorrelation function of a stationary process. J. Anal. Math. 81 (2000) 65-109. | MR | Zbl

[13] R. Lewis and G.C. Reinsel, Prediction of multivariate time series by autoregressive model fitting. J. Multivariate Anal. 16 (1985) 393-411. | MR | Zbl

[14] B. Mandelbrot and J.R. Wallis, Some long-run properties of geophysical records. Water Resour. Res. 5 (1969) 321-340.

[15] M. Pourahmadi, On the convergence of finite linear predictors of stationary processes. J. Multivariate Anal. 30 (1989) 167-180. | MR | Zbl

[16] B.K. Ray, Modeling long-memory processes for optimal long-range prediction. J. Time Ser. Anal. 14 (1993) 511-525. | MR | Zbl

[17] L.J. Soares and L.R. Souza, Forecasting electricity demand using generalized long memory. Int. J. Forecast. 22 (2006) 17-28.

[18] M.-C. Viano, Cl. Deniau and G. Oppenheim, Long-range dependence and mixing for discrete time fractional processes. J. Time Ser. Anal. 16 (1995) 323-338. | MR | Zbl

[19] P. Whittle, Prediction and regulation by linear least-square methods. 2nd edn. (1963). | Zbl

[20] A. Zygmund, Trigonometric series. Cambridge University Press (1968). | MR | Zbl

Cité par Sources :