Asymptotic unbiased density estimators
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 1-14.

This paper introduces a computationally tractable density estimator that has the same asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples as low as n=50, where we see an improvement of as much as 20% over the traditionnal estimator.

DOI : 10.1051/ps:2007055
Classification : 62G07, 62G20
Mots-clés : nonparametric density estimation, kernel smoother, asymptotic normality, bias reduction, confidence intervals
@article{PS_2009__13__1_0,
     author = {Hengartner, Nicolas W. and Matzner-L{\o}ber, \'Eric},
     title = {Asymptotic unbiased density estimators},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--14},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2007055},
     mrnumber = {2493852},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007055/}
}
TY  - JOUR
AU  - Hengartner, Nicolas W.
AU  - Matzner-Løber, Éric
TI  - Asymptotic unbiased density estimators
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 1
EP  - 14
VL  - 13
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007055/
DO  - 10.1051/ps:2007055
LA  - en
ID  - PS_2009__13__1_0
ER  - 
%0 Journal Article
%A Hengartner, Nicolas W.
%A Matzner-Løber, Éric
%T Asymptotic unbiased density estimators
%J ESAIM: Probability and Statistics
%D 2009
%P 1-14
%V 13
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2007055/
%R 10.1051/ps:2007055
%G en
%F PS_2009__13__1_0
Hengartner, Nicolas W.; Matzner-Løber, Éric. Asymptotic unbiased density estimators. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 1-14. doi : 10.1051/ps:2007055. http://www.numdam.org/articles/10.1051/ps:2007055/

[1] I.S. Abramson, On bandwidth variation in kernel estimates - a square root law. Ann. Statist. 10 (1982) 1217-1223. | MR | Zbl

[2] I.S. Abramson, Adaptive density flattening-metric distortion principle for combining bias in nearest neighbor methods. Ann. Statist. 12 (1984) 880-886. | MR | Zbl

[3] A.R. Barron, L. Györfi and E.C. Van Der Meulen, Distribution Estimation Consistent in Total Variation and in Two Types of Information Divergence. IEEE Trans. Inf. Theory 38 (1992) 1437-1453. | MR | Zbl

[4] A. Berlinet, Hierarchies of higher order kernels. Prob. Theory Related Fields 94 (1993) 489-504. | MR | Zbl

[5] B.L. Granovsky and H.-G. Müller, Optimizing kernel methods: a unifying variational principle. Ins. Statist. Rev. 59 (1991) 373-388. | Zbl

[6] P. Hall, On the bias of variable bandwidth curve estimators. Biometrika 77 (1990) 529-535. | MR | Zbl

[7] P. Hall and J.S. Marron, Variable window width kernel estimates of a probability density. Prob. Theory Related Fields 80 (1988) 37-49. | MR | Zbl

[8] N.L. Hjort and I.K. Glad, Nonparametric density estimation with a parametric start. Ann. Statist. 23 (1995) 882-904. | MR | Zbl

[9] N.L. Hjort and M.C. Jones, Locally parametric nonparametric density estimation. Ann. Statist. 24 (1996) 1619-1647. | MR | Zbl

[10] M.C. Jones, Variable kernel density estimates variable kernel density estimates. Aust. J. Statist. 32 (1990) 361-371. Correction 33 (1991) 119. | MR

[11] M.C. Jones, O.B. Linton and J.P. Nielsen, A simple bias reduction method for density estimation. Biometrika 82 (1995) 327-38. | MR | Zbl

[12] M.C. Jones, I.J. Mckay and T.-C. Hu, Variable location and scale kernel density estimation. Inst. Statist. Math. 46 (1994) 521-535. | MR | Zbl

[13] I. Mckay, A note on bias reduction in variable kernel density estimates. Can. J. Statist. 21 (1993) 367-375. | MR | Zbl

[14] J.S. Marron and M.P. Wand, Exact mean integrated squared error. Ann. Statist. 20 (1992) 712-736. | MR | Zbl

[15] J.P. Nielson and O. Linton, A multiplicative bias reduction method for nonparametric regression. Statist. Probab. Lett. 19 (1994) 181-187. | MR | Zbl

[16] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. | MR | Zbl

[17] W. Stute, A law of iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414-422. | MR | Zbl

[18] G. Terrel and D. Scott, On improving convergence rates for non-negative kernel density estimators. Ann. Statist. 8 (1980) 1160-1163. | MR | Zbl

[19] M.P. Wand and M.C. Jones, Kernel Smoothing. Chapman and Hall, London (1995). | MR | Zbl

Cité par Sources :