We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
Mots-clés : discretization scheme, strong convergence, CIR process
@article{PS_2008__12__1_0, author = {Berkaoui, Abdel and Bossy, Mireille and Diop, Awa}, title = {Euler scheme for {SDEs} with {non-Lipschitz} diffusion coefficient : strong convergence}, journal = {ESAIM: Probability and Statistics}, pages = {1--11}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007030}, mrnumber = {2367990}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007030/} }
TY - JOUR AU - Berkaoui, Abdel AU - Bossy, Mireille AU - Diop, Awa TI - Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence JO - ESAIM: Probability and Statistics PY - 2008 SP - 1 EP - 11 VL - 12 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007030/ DO - 10.1051/ps:2007030 LA - en ID - PS_2008__12__1_0 ER -
%0 Journal Article %A Berkaoui, Abdel %A Bossy, Mireille %A Diop, Awa %T Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence %J ESAIM: Probability and Statistics %D 2008 %P 1-11 %V 12 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007030/ %R 10.1051/ps:2007030 %G en %F PS_2008__12__1_0
Berkaoui, Abdel; Bossy, Mireille; Diop, Awa. Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11. doi : 10.1051/ps:2007030. http://www.numdam.org/articles/10.1051/ps:2007030/
[1] On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | MR | Zbl
,[2] Euler scheme for solutions of stochastic differential equations. Potugalia Mathematica Journal 61 (2004) 461-478. | MR | Zbl
,[3] Euler scheme for one dimensional SDEs with a diffusion coefficient function of the form , in [1/2,1). Annals Appl. Prob. (Submitted).
and ,[4] A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 (2004) 877-889. | MR | Zbl
, and ,[5] A theory of the term structure of the interest rates. Econometrica 53 (1985) 385-407. | MR
, and ,[6] Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14 (1998) 77-84. | MR | Zbl
and ,[7] Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, École nationale des ponts et chaussées (1992).
,[8] Managing smile risk. WILMOTT Magazine (September, 2002).
, , and ,[9] Pricing interest-rate derivative securities. Rev. Finan. Stud. 3 (1990) 573-592.
and ,[10] Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). | MR | Zbl
and ,Cité par Sources :