In this paper, a singular semi-linear parabolic PDE with locally periodic coefficients is homogenized. We substantially weaken previous assumptions on the coefficients. In particular, we prove new ergodic theorems. We show that in such a weak setting on the coefficients, the proper statement of the homogenization property concerns viscosity solutions, though we need a bounded Lipschitz terminal condition.
Mots-clés : homogenization, nonlinear parabolic PDE, Poisson equation, diffusion approximation, backward SDE
@article{PS_2007__11__385_0, author = {Bench\'erif-Madani, Abdellatif and Pardoux, \'Etienne}, title = {Homogenization of a semilinear parabolic {PDE} with locally periodic coefficients : a probabilistic approach}, journal = {ESAIM: Probability and Statistics}, pages = {385--411}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007026}, mrnumber = {2339300}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007026/} }
TY - JOUR AU - Benchérif-Madani, Abdellatif AU - Pardoux, Étienne TI - Homogenization of a semilinear parabolic PDE with locally periodic coefficients : a probabilistic approach JO - ESAIM: Probability and Statistics PY - 2007 SP - 385 EP - 411 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007026/ DO - 10.1051/ps:2007026 LA - en ID - PS_2007__11__385_0 ER -
%0 Journal Article %A Benchérif-Madani, Abdellatif %A Pardoux, Étienne %T Homogenization of a semilinear parabolic PDE with locally periodic coefficients : a probabilistic approach %J ESAIM: Probability and Statistics %D 2007 %P 385-411 %V 11 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007026/ %R 10.1051/ps:2007026 %G en %F PS_2007__11__385_0
Benchérif-Madani, Abdellatif; Pardoux, Étienne. Homogenization of a semilinear parabolic PDE with locally periodic coefficients : a probabilistic approach. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 385-411. doi : 10.1051/ps:2007026. http://www.numdam.org/articles/10.1051/ps:2007026/
[1] SDE, BSDE and PDE. Pitman Res. Notes Math. 364 (1997) 47-80. | Zbl
and ,[2] Homogenization of a diffusion with locally periodic coefficients. Sém. Prob. XXXVIII, LNM 1857 (2003) 363-392. | Zbl
and ,[3] Locally periodic Homogenization. Asymp. Anal. 39 (2004) 263-279. | Zbl
and ,[4] Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Comm. Pure. Appl. Math. 39 (1986) 769-805. | Zbl
, and ,[5] Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs. NoDEA Nonlinear Diff. Eq. Appl. 6 (1999) 395-411. | Zbl
, and ,[6] User's guide to viscosity solutions of second order partial differential equations. Bull. A.M.S. 27 (1992) 1-67. | Zbl
, and ,[7] On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Proc. Appl. 99 (2002) 209-286. | Zbl
,[8] Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients. Ann. Prob. 32 (2004) 2305-2361. | Zbl
,[9] A non-Skorohod topology on the Skorohod space. Elec. J. Prob. 2 (1997) 1-21. | Zbl
,[10] Random time changes and convergence in distribution under the Meyer-Zheng conditions. Ann. Prob. 19 (1991) 1010-1034. | Zbl
,[11] Tightness criteria for laws of semimartingales. Anal. I. H. P. 20 (1984) 353-372. | Numdam | Zbl
and ,[12] Homogenization of linear and semilinear second order Parabolic PDEs with periodic coefficients: -a probabilistic approach. J. Func. Anal. 167 (1999a) 498-520. | Zbl
,[13] BSDEs, weak convergence and homogenization of semilinear PDEs, in Nonlinear analysis, Differential Equations and Control, F.H. Clarke and R.J. Stern Eds., Kluwer Acad. Pub. (1999b) 503-549. | Zbl
,Cité par Sources :