On pointwise adaptive curve estimation based on inhomogeneous data
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 344-364.

We want to recover a signal based on noisy inhomogeneous data (the amount of data can vary strongly on the estimation domain). We model the data using nonparametric regression with random design, and we focus on the estimation of the regression at a fixed point x 0 with little, or much data. We propose a method which adapts both to the local amount of data (the design density is unknown) and to the local smoothness of the regression function. The procedure consists of a local polynomial estimator with a Lepski type data-driven bandwidth selector, see for instance Lepski et al. [Ann. Statist. 25 (1997) 929-947]. We assess this procedure in the minimax setup, over a class of function with local smoothness s>0 of Hölder type. We quantify the amount of data at x 0 in terms of a local property on the design density called regular variation, which allows situations with strong variations in the concentration of the observations. Moreover, the optimality of the procedure is proved within this framework.

DOI : 10.1051/ps:2007023
Classification : 62G05, 62G08
Mots-clés : adaptive estimation, inhomogeneous data, nonparametric regression, random design
@article{PS_2007__11__344_0,
     author = {Ga{\"\i}ffas, St\'ephane},
     title = {On pointwise adaptive curve estimation based on inhomogeneous data},
     journal = {ESAIM: Probability and Statistics},
     pages = {344--364},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007023},
     mrnumber = {2339297},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007023/}
}
TY  - JOUR
AU  - Gaïffas, Stéphane
TI  - On pointwise adaptive curve estimation based on inhomogeneous data
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 344
EP  - 364
VL  - 11
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007023/
DO  - 10.1051/ps:2007023
LA  - en
ID  - PS_2007__11__344_0
ER  - 
%0 Journal Article
%A Gaïffas, Stéphane
%T On pointwise adaptive curve estimation based on inhomogeneous data
%J ESAIM: Probability and Statistics
%D 2007
%P 344-364
%V 11
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2007023/
%R 10.1051/ps:2007023
%G en
%F PS_2007__11__344_0
Gaïffas, Stéphane. On pointwise adaptive curve estimation based on inhomogeneous data. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 344-364. doi : 10.1051/ps:2007023. http://www.numdam.org/articles/10.1051/ps:2007023/

[1] A. Antoniadis, G. Gregoire and P. Vial, Random design wavelet curve smoothing. Statist. Probab. Lett. 35 (1997) 225-232. | Zbl

[2] Y. Baraud, Model selection for regression on a random design. ESAIM Probab. Statist. 6 (2002) 127-146 (electronic). | Numdam | Zbl

[3] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, Cambridge University Press (1989). | MR | Zbl

[4] L. Brown and T. Cai, Wavelet shrinkage for nonequispaced samples. Ann. Statist. 26 (1998) 1783-1799. | Zbl

[5] L.D. Brown and M.G. Low, A constrained risk inequality with applications to nonparametric functional estimations. Ann. Statist. 24 (1996) 2524-2535. | Zbl

[6] T.T. Cai, M. Low and L.H. Zhao, Tradeoffs between global and local risks in nonparametric function estimation. Tech. rep., Wharton, University of Pennsylvania, http://stat.wharton.upenn.edu/~tcai/paper/html/Tradeoff.html (2004). | Zbl

[7] V. Delouille, J. Simoens and R. Von Sachs, Smooth design-adapted wavelets for nonparametric stochastic regression. J. Amer. Statist. Soc. 99 (2004) 643-658. | Zbl

[8] J. Fan and I. Gijbels, Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B. Methodological 57 (1995) 371-394. | Zbl

[9] J. Fan and I. Gijbels, Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1996). | MR | Zbl

[10] S. Gaïffas, Convergence rates for pointwise curve estimation with a degenerate design. Mathematical Methods of Statistics 1 (2005) 1-27. Available at http://hal.ccsd.cnrs.fr/ccsd-00003086/en/

[11] A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135-170. | Zbl

[12] G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli, 10 (2004) 1053-1105. | Zbl

[13] O.V. Lepski, Asymptotically minimax adaptive estimation i: Upper bounds, optimally adaptive estimates. Theory Probab. Applic. 36 (1988) 682-697. | Zbl

[14] O.V. Lepski, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl., 35 (1990) 454-466. | Zbl

[15] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947. | Zbl

[16] O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512-2546. | Zbl

[17] V. Maxim, Restauration de signaux bruités sur des plans d'experience aléatoires. Ph.D. thesis, Université Joseph Fourier, Grenoble 1 (2003).

[18] V.G. Spokoiny, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist. 26 (1998) 1356-1378. | Zbl

[19] C.J. Stone, Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 (1980) 1348-1360. | Zbl

[20] A. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2003). | Zbl

[21] M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal. 80 (2002) 256-284. | Zbl

Cité par Sources :