In this paper, we prove a Donsker theorem for one-dimensional processes generated by an operator with measurable coefficients. We construct a random walk on any grid on the state space, using the transition probabilities of the approximated process, and the conditional average times it spends on each cell of the grid. Indeed we can compute these quantities by solving some suitable elliptic PDE problems.
Mots clés : Monte Carlo methods, Donsker theorem, one-dimensional process, scale function, divergence form operators, Feynman-Kac formula, elliptic PDE problem
@article{PS_2007__11__301_0, author = {\'Etor\'e, Pierre and Lejay, Antoine}, title = {A {Donsker} theorem to simulate one-dimensional processes with measurable coefficients}, journal = {ESAIM: Probability and Statistics}, pages = {301--326}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007021}, mrnumber = {2339295}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007021/} }
TY - JOUR AU - Étoré, Pierre AU - Lejay, Antoine TI - A Donsker theorem to simulate one-dimensional processes with measurable coefficients JO - ESAIM: Probability and Statistics PY - 2007 SP - 301 EP - 326 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007021/ DO - 10.1051/ps:2007021 LA - en ID - PS_2007__11__301_0 ER -
%0 Journal Article %A Étoré, Pierre %A Lejay, Antoine %T A Donsker theorem to simulate one-dimensional processes with measurable coefficients %J ESAIM: Probability and Statistics %D 2007 %P 301-326 %V 11 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007021/ %R 10.1051/ps:2007021 %G en %F PS_2007__11__301_0
Étoré, Pierre; Lejay, Antoine. A Donsker theorem to simulate one-dimensional processes with measurable coefficients. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 301-326. doi : 10.1051/ps:2007021. http://www.numdam.org/articles/10.1051/ps:2007021/
[1] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl
, and ,[2] Convergence of Probabilities Measures. John Wiley & Sons (1968). | MR | Zbl
,[3] Probability. Addison-Wesley Series in Statistics (1968). | MR | Zbl
,[4] Analyse fonctionnelle. Masson (1983). | MR | Zbl
,[5] Applications of -function pertubation to the pricing of derivative securities. Physica A 342 (2004) 677-692.
, and ,[6] Self Exciting Threshold Interest Rates Model. Int. J. Theor. Appl. Finance 9 (2006) 1093-1122. | Zbl
, and ,[7] On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11 (2006) 249-275. | Zbl
,[8] Approximation de processus de diffusion à coefficients discontinus en dimension un et applications à la simulation. Ph.D. thesis, Université Henri Poincaré, Nancy, France (2006).
,[9] The inverse EEG and MEG problems: The adjoint state approach I: The continuous case. INRIA research report RR-3673 (1999).
, , , , , , , , , , and ,[10] Necessary and Sufficient Conditions for Weak Convergence of One-Dimensional Markov Processes. Festschrift dedicated to 70th Birthday of Professor E.B. Dynkin, Birkhäuser (1994) 95-109. | Zbl
and ,[11] Homogenization of Differential Operators and Integral Functionals. Springer (1994). | MR | Zbl
, and ,[12] Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992). | MR | Zbl
and ,[13] Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence: cas linéaires et semi-linéaires. Ph.D. thesis, Université de Provence, Marseille, France (2000).
,[14] Stochastic Differential Equations Driven by Processes Generated by Divergence Form Operators I: A Wong-Zakai Theorem. ESAIM Probab. Stat. 10 (2006) 356-379. | Numdam
,[15] A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Annals Appl. Probab. 16 (2006) 107-139. | Zbl
and ,[16] Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées. Ph.D. thesis, Université de Provence, Marseille, France (2004).
,[17] Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. C.R. Acad. Sci. Paris 342 (2006) 51-56. | Zbl
and ,[18] Metric based upscaling. Commun. Pure Appl. Math. (to appear). | MR
and ,[19] A generalized Taylor-Aris formula and Skew Diffusion. Multiscale Model. Simul. 5 (2006) 786-801. | Zbl
, , , and ,[20] Continuous Martingale and Brownian Motion. Springer, Heidelberg (1991). | MR | Zbl
and ,[21] Weak convergence of Diffusions Corresponding to Divergence Form Operators. Stochastics Stochastics Rep. 57 (1996) 129-157. | Zbl
,[22] Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Springer, Lecture Notes in Mathematics, Seminaire de Probabilités XXII 1321 (1988) 316-347. | Numdam | Zbl
,[23] Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 619-649. | Numdam | Zbl
and ,[24] Averaging and -convergence of Differential Operators. Russian Math. Survey 34 (1979) 69-147. | Zbl
, , and ,[25] -convergence of Parabolic Operators. Russian Math. Survey 36 (1981) 9-60. | Zbl
, and ,Cité par Sources :