Moderate deviations for two sample t-statistics
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 264-271.

Let X 1 ,...,X n 1 be a random sample from a population with mean μ 1 and variance σ 1 2 , and Y 1 ,...,Y n 2 be a random sample from another population with mean μ 2 and variance σ 2 2 independent of {X i ,1in 1 }.Consider the two sample t-statistic T=X ¯-Y ¯-(μ 1 -μ 2 ) s 1 2 /n 1 +s 2 2 /n 2 . This paper shows that lnP(Tx)-x 2 /2 for any 𝑥:=𝑥(𝑛 1 ,𝑛 2 ) satisfying x, x=o(n 1 +n 2 ) 1/2 as n 1 ,n 2 provided 0<c 1 n 1 /n 2 c 2 <. If, in addition, E|X 1 | 3 <, E|Y 1 | 3 <, then P(Tx) 1-Φ(x)1 holds uniformly in x(0,o((n 1 +n 2 ) 1/6 )).

DOI : 10.1051/ps:2007020
Classification : 60F10, 60G50, 62F05
Mots-clés : two sample t-statistic, asymptotic distribution, moderate deviation
@article{PS_2007__11__264_0,
     author = {Cao, Hongyuan},
     title = {Moderate deviations for two sample $t$-statistics},
     journal = {ESAIM: Probability and Statistics},
     pages = {264--271},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007020},
     mrnumber = {2320820},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007020/}
}
TY  - JOUR
AU  - Cao, Hongyuan
TI  - Moderate deviations for two sample $t$-statistics
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 264
EP  - 271
VL  - 11
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007020/
DO  - 10.1051/ps:2007020
LA  - en
ID  - PS_2007__11__264_0
ER  - 
%0 Journal Article
%A Cao, Hongyuan
%T Moderate deviations for two sample $t$-statistics
%J ESAIM: Probability and Statistics
%D 2007
%P 264-271
%V 11
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2007020/
%R 10.1051/ps:2007020
%G en
%F PS_2007__11__264_0
Cao, Hongyuan. Moderate deviations for two sample $t$-statistics. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 264-271. doi : 10.1051/ps:2007020. http://www.numdam.org/articles/10.1051/ps:2007020/

[1] E. Giné, F. Gőtze, and D.M. Mason, When is the student t-statistic asymptotically standard normal? Ann. Probab. 25 (1997) 1514-1531. | Zbl

[2] B.-Y. Jing, Q.M. Shao, and Q.Y. Wang, Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31 (2003) 2167-2215. | Zbl

[3] V.V. Petrov, Limit Theorems of Probability Theory. Clarendon Press, Oxford (1995). | MR | Zbl

[4] J. Robinson, and Q. Wang, On the self-normalized Cramér-type large deviation. J. Theor. Probab. 18 (2005) 891-909. | Zbl

[5] Q.M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285-328. | Zbl

[6] Q.M. Shao, A Cramér type large deviation result for student's t-statistic. J. Theor. Probab. 12 (1999) 385-398. | Zbl

Cité par Sources :