Polynomial expansions of density of power mixtures
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 248-263.

For any given random variable Y with infinitely divisible distribution in a quadratic natural exponential family we obtain a polynomial expansion of the power mixture density of Y. We approach the problem generally, and then consider certain distributions in greater detail. Various applications are indicated and the results are also applied to obtain approximations and their error bounds. Estimation of density and goodness-of-fit test are derived.

DOI : 10.1051/ps:2007017
Classification : 60E05, 62E17
Mots-clés : approximation, convolution, error bound, goodness-of-fit test, mixed distribution, orthogonal polynomials, scale mixture
@article{PS_2007__11__248_0,
     author = {Pommeret, Denys},
     title = {Polynomial expansions of density of power mixtures},
     journal = {ESAIM: Probability and Statistics},
     pages = {248--263},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007017},
     mrnumber = {2320819},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007017/}
}
TY  - JOUR
AU  - Pommeret, Denys
TI  - Polynomial expansions of density of power mixtures
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 248
EP  - 263
VL  - 11
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007017/
DO  - 10.1051/ps:2007017
LA  - en
ID  - PS_2007__11__248_0
ER  - 
%0 Journal Article
%A Pommeret, Denys
%T Polynomial expansions of density of power mixtures
%J ESAIM: Probability and Statistics
%D 2007
%P 248-263
%V 11
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2007017/
%R 10.1051/ps:2007017
%G en
%F PS_2007__11__248_0
Pommeret, Denys. Polynomial expansions of density of power mixtures. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 248-263. doi : 10.1051/ps:2007017. http://www.numdam.org/articles/10.1051/ps:2007017/

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. Dover, New York (1972).

[2] O.E. Barndorff-Nielsen, Information and Exponential Families. Wiley, New York (1978).

[3] M. Casalis, The 2d+4 simple quadratic natural exponential families on d . Ann. Statist. 24 (1996) 1828-1854. | Zbl

[4] P. Feinsilver, Some classes of orthogonal polynomials associated with martingales. Proc. A.M.S. 98 (1986) 298-302. | Zbl

[5] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. I, Wiley (1966a). | Zbl

[6] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Wiley (1966b). | MR | Zbl

[7] Y. Fujikoshi and R. Shimizu, Asymptotic expansions for univariate and multivariate distributions. J. Multivariate Anal. 30 (1989) 279-291. | Zbl

[8] P. Hall, Polynomial Expansion of Density and Distribution Functions of Scale Mixtures. J. Multivariate Anal. 11 (1981) 173-184. | Zbl

[9] B. Jorgensen, The Theory of Dispersion models. Chapman & Hall, London (1997). | MR | Zbl

[10] J. Keilson and F.W. Steutel, Mixtures of distributions, moment inequalities and measures of exponentiality and normality. Ann. Probab. 2 (1974) 112-130. | Zbl

[11] R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report no. 94-05, Delft University of Technology, Faculty of Technical Mathematics and Informatics (1994).

[12] G. Letac, Lectures on natural exponential families and their variance functions. Instituto de matemática pura e aplicada: Monografias de matemática 50, Río de Janeiro, Brésil (1992). | MR | Zbl

[13] J. Meixner, Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function, J. London Math. Soc. 9 (1934) 6-13. | Zbl

[14] C.N. Morris, Natural exponential families with quadratic variance functions. Ann. Statist. 10 (1982) 65-82. | Zbl

[15] D. Pommeret, Orthogonal polynomials and natural exponential families. Test 5 (1996) 77-111. | Zbl

[16] D. Pommeret, Multidimensional Bhattacharyya Matrices and Exponential Families. J. Multivariate Anal. 63 (1997) 105-118. | Zbl

[17] J.C.W. Rayner and D.J. Best, Smooth Tests of Goodness of Fit. Oxford University Press, New York (1989). | MR | Zbl

[18] R.F. Serfozo, Random Time Transformations of Semi-Markov Processes. Ann. Math. Statist. 42 (1971) 176-188. | Zbl

[19] R. Shimizu, Error bounds for asymptotic expansion of the scale mixture of the normal distribution. Ann. Inst. Statist. Math. 39 (1987) 611-622. | Zbl

[20] R. Shimizu, Expansion of the Scale Mixture of the Multivariate Normal Distributions with Error Bound Evaluated in the L 1 -Norm. J. Multivariate Anal. 5 (1995) 126-138. | Zbl

[21] R. Shimizu and Y. Fujikoshi, Sharp error bound for asymptotic expansions of distribution functions for scale mixture. Ann. Inst. Statist. Math. 49 (1997) 285-297. | Zbl

Cité par Sources :