A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are used to produce a simulation algorithm for an anisotropic fractional brownian sheet. The convergence rate is given. These results are valuable for any value of the Hurst parameters Finally, the approximation process is iterative on the quarter plane A sample of such simulations can be used to test estimators of the parameters
Mots-clés : random field simulation and approximation, anisotropic fractional brownian sheet
@article{PS_2007__11__115_0, author = {Coutin, Laure and Pontier, Monique}, title = {Approximation of the fractional brownian sheet via {Ornstein-Uhlenbeck} sheet}, journal = {ESAIM: Probability and Statistics}, pages = {115--146}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007010}, mrnumber = {2299651}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007010/} }
TY - JOUR AU - Coutin, Laure AU - Pontier, Monique TI - Approximation of the fractional brownian sheet via Ornstein-Uhlenbeck sheet JO - ESAIM: Probability and Statistics PY - 2007 SP - 115 EP - 146 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007010/ DO - 10.1051/ps:2007010 LA - en ID - PS_2007__11__115_0 ER -
%0 Journal Article %A Coutin, Laure %A Pontier, Monique %T Approximation of the fractional brownian sheet via Ornstein-Uhlenbeck sheet %J ESAIM: Probability and Statistics %D 2007 %P 115-146 %V 11 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007010/ %R 10.1051/ps:2007010 %G en %F PS_2007__11__115_0
Coutin, Laure; Pontier, Monique. Approximation of the fractional brownian sheet via Ornstein-Uhlenbeck sheet. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 115-146. doi : 10.1051/ps:2007010. http://www.numdam.org/articles/10.1051/ps:2007010/
[1] A simple viscoelastic damper model - application to a vibrating string. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), Lect. Notes Control Inform. Sci. 185, Springer, Berlin (1993) 436-446. | Zbl
, and ,[2] Les ondelettes à la conquête du drap brownien fractionnaire. CRAS série I 335 (2002) 1063-1068. | Zbl
, and ,[3] Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl. 9 (2003) 451-471. | Zbl
and ,[4] Generators of long-range dependent processes: a survey, in Long-Range dependence, Theory and Applications. Birkhauser (2003) 579-623. | Zbl
, , , and ,[5] Non Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J.R. Statistical Society B 63 (2001) 167-241. | Zbl
and ,[6] Gaussian processes with stationary increments local times and sample function properties. Ann. Math. Statist. 41 (1970) 1260-1272. | Zbl
,[7] Approximation of some Gaussian processes. Stat. Inference of Stoch. Processes 3 (2000) 161-171. | Zbl
, and ,[8] Champs localement auto-similaires, dans Lois d'échelle, fractales et ondelettes 1, P. Abry, P. Goncalvès, J. Lévy Véhel, Eds. (2001).
,[9] Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'été de probabilités de saint-Flour L. N. in Math 480 (1974) 1-96. | Zbl
,[10] Long-range dependence through gamma-mixed Ornstein-Uhlenbeck process. E.J.P. 4 (1999) 1-33. | Zbl
and ,[11] Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981). | MR | Zbl
and ,[12] Brownian Motion and Stochastic Calculus. Springer, 2d edition (1999). | Zbl
and ,[13] Drap brownien fractionnaire, thèse à l'Université d'Orléans (2000).
,[14] Drap brownien fractionnaire, in C.R.A.S., Paris, série I 329 (1999) 893-898. | Zbl
and ,[15] Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and Applications 5 (1999) 465-494. | Zbl
, and ,[16] Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin (1990). | Zbl
and ,[17] Stable Non-Gaussian random Processes, Stochastic Modeling. Chapman and Hall, New York (1994). | MR | Zbl
and ,[18] A Concise Introduction to the Theory of Integration Stochastic Integration. Birkhauser, 2d edition (1994). | MR | Zbl
,[19] A Simulation of stationary Gaussian processes in . J. Comput. Graphical Statist. 3-4 (1994) 409-432.
and ,Cité par Sources :