Considering the centered empirical distribution function as a variable in , we derive non asymptotic upper bounds for the deviation of the -norms of as well as central limit theorems for the empirical process indexed by the elements of generalized Sobolev balls. These results are valid for a large class of dependent sequences, including non-mixing processes and some dynamical systems.
Mots clés : deviation inequalities, weak dependence, Cramér-von Mises statistics, empirical process, expanding maps
@article{PS_2007__11__102_0, author = {Dedecker, J\'er\^ome and Merlev\`ede, Florence}, title = {The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$}, journal = {ESAIM: Probability and Statistics}, pages = {102--114}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007009}, mrnumber = {2299650}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007009/} }
TY - JOUR AU - Dedecker, Jérôme AU - Merlevède, Florence TI - The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$ JO - ESAIM: Probability and Statistics PY - 2007 SP - 102 EP - 114 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007009/ DO - 10.1051/ps:2007009 LA - en ID - PS_2007__11__102_0 ER -
%0 Journal Article %A Dedecker, Jérôme %A Merlevède, Florence %T The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$ %J ESAIM: Probability and Statistics %D 2007 %P 102-114 %V 11 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007009/ %R 10.1051/ps:2007009 %G en %F PS_2007__11__102_0
Dedecker, Jérôme; Merlevède, Florence. The empirical distribution function for dependent variables : asymptotic and nonasymptotic results in ${\mathbb {L}}^p$. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 102-114. doi : 10.1051/ps:2007009. http://www.numdam.org/articles/10.1051/ps:2007009/
[1] Weighted sums of certain dependent random variables. Tôkohu Math. J. 19 (1967) 357-367. | MR | Zbl
,[2] Random walks with stationary increments and renewal theory. Mathematical Centre Tracts 112, Mathematisch Centrum, Amsterdam (1979). | MR | Zbl
,[3] An adaptive compression algorithm in Besov Spaces. Constr. Approx. 16 (2000) 1-36. | MR | Zbl
and ,[4] Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Relat. Fields 123 (2002) 301-322. | MR | Zbl
, and ,[5] The conditional central limit theorem in Hilbert spaces. Stoch. Processes Appl. 108 (2003) 229-262. | MR | Zbl
and ,[6] Coupling for -dependent sequences and applications. J. Theoret. Probab. 17 (2004) 861-885. | MR | Zbl
and ,[7] New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203-236. | MR | Zbl
and ,[8] On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. | EuDML | Numdam | MR | Zbl
and ,[9] Invariance principle for absolutely regular empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 393-427. | EuDML | Numdam | MR | Zbl
, and ,[10] The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 (1969) 739-741. | Zbl
,[11] The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269-1283. | Zbl
,[12] On the coupling of dependent random variables and applications, in Empirical process techniques for dependent data, Birkhäuser (2002) 171-193. | Zbl
and ,[13] weak convergence of the empirical process for dependent variables, in Wavelets and statistics (Villard de Lans 1994), Lect. Notes Statist. 103 (1995) 331-344. | Zbl
and ,[14] Weak convergence in of the uniform empirical process under dependence. Statist. Probab. Lett. 39 (1998) 363-370. | Zbl
and ,[15] An approach to inequalities for the distributions of infinite-dimensional martingales, in Probability in Banach spaces, Proc. Eight Internat. Conf. 8 (1992) 128-134. | Zbl
,[16] Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Série I 330 (2000) 905-908. | Zbl
,[17] Bracketing smooth functions. Stoch. Processes Appl. 52 (1994) 93-105. | Zbl
,[18] A central limit theorem for martingales in Banach spaces. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 23 (1975) 917-920. | Zbl
,[19] Exponential bounds for large deviations. Theory Prob. Appl. 19 (1974) 154-155. | Zbl
,Cité par Sources :