Potentials of a Markov process are expected suprema
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 89-101.

Expected suprema of a function f observed along the paths of a nice Markov process define an excessive function, and in fact a potential if f vanishes at the boundary. Conversely, we show under mild regularity conditions that any potential admits a representation in terms of expected suprema. Moreover, we identify the maximal and the minimal representing function in terms of probabilistic potential theory. Our results are motivated by the work of El Karoui and Meziou (2006) on the max-plus decomposition of supermartingales, and they provide a singular analogue to the non-linear Riesz representation in El Karoui and Föllmer (2005).

DOI : 10.1051/ps:2007008
Classification : 31C05, 60J25, 60J45
Mots-clés : Markov processes, potentials, optimal stopping, max-plus decomposition
@article{PS_2007__11__89_0,
     author = {F\"ollmer, Hans and Knispel, Thomas},
     title = {Potentials of a {Markov} process are expected suprema},
     journal = {ESAIM: Probability and Statistics},
     pages = {89--101},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007008},
     mrnumber = {2299649},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007008/}
}
TY  - JOUR
AU  - Föllmer, Hans
AU  - Knispel, Thomas
TI  - Potentials of a Markov process are expected suprema
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 89
EP  - 101
VL  - 11
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007008/
DO  - 10.1051/ps:2007008
LA  - en
ID  - PS_2007__11__89_0
ER  - 
%0 Journal Article
%A Föllmer, Hans
%A Knispel, Thomas
%T Potentials of a Markov process are expected suprema
%J ESAIM: Probability and Statistics
%D 2007
%P 89-101
%V 11
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2007008/
%R 10.1051/ps:2007008
%G en
%F PS_2007__11__89_0
Föllmer, Hans; Knispel, Thomas. Potentials of a Markov process are expected suprema. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 89-101. doi : 10.1051/ps:2007008. http://www.numdam.org/articles/10.1051/ps:2007008/

[1] P. Bank and N. El Karoui, A Stochastic Representation Theorem with Applications to Optimization and Obstacle Problems. Ann. Probab. 32 (2005) 1030-1067. | MR | Zbl

[2] P. Bank and H. Föllmer, American Options, Multi-armed Bandits, and Optimal Consumption Plans: A Unifying View, in Paris-Princeton Lectures on Mathematical Finance 2002, Lect. Notes Math. 1814 (2003) 1-42. | MR | Zbl

[3] C. Dellacherie and P. Meyer, Probabilités et potentiel. Chapitres XII-XVI: Théorie du potentiel associée à une résolvante, Théorie des processus de Markov, Hermann, Paris (1987). | MR | Zbl

[4] N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ninth Saint Flour Probability Summer School-1979 (Saint Flour, 1979), Lect. Notes Math. 876 (1981) 73-238. | MR | Zbl

[5] N. El Karoui, Max-Plus Decomposition of Supermartingale - Application to Portfolio Insurance, http://www.ima.umn.edu/talks/workshops/4-12-16.2004/el_karoui/IMA2004.pdf (2004).

[6] N. El Karoui and H. Föllmer, A non-linear Riesz representation in probabilistic potential theory, in Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques 41 (2005) 269-283. | EuDML | Numdam | MR | Zbl

[7] N. El Karoui and A. Meziou, Constrained optimization with respect to stochastic dominance: Application to portfolio insurance. Math. Finance 16 (2006) 103-117. | MR | Zbl

[8] T. Knispel, Eine nichtlineare Riesz-Darstellung bezüglich additiver Funktionale im potentialtheoretischen Kontext. Diploma Thesis, Humboldt University, Berlin (2004).

[9] A.N. Shiryaev, Statistical Sequential Analysis. AMS, Providence, Transl. Math. Monographs 38 (1973). | MR | Zbl

Cité par Sources :