Expected suprema of a function observed along the paths of a nice Markov process define an excessive function, and in fact a potential if vanishes at the boundary. Conversely, we show under mild regularity conditions that any potential admits a representation in terms of expected suprema. Moreover, we identify the maximal and the minimal representing function in terms of probabilistic potential theory. Our results are motivated by the work of El Karoui and Meziou (2006) on the max-plus decomposition of supermartingales, and they provide a singular analogue to the non-linear Riesz representation in El Karoui and Föllmer (2005).
Mots-clés : Markov processes, potentials, optimal stopping, max-plus decomposition
@article{PS_2007__11__89_0, author = {F\"ollmer, Hans and Knispel, Thomas}, title = {Potentials of a {Markov} process are expected suprema}, journal = {ESAIM: Probability and Statistics}, pages = {89--101}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007008}, mrnumber = {2299649}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007008/} }
TY - JOUR AU - Föllmer, Hans AU - Knispel, Thomas TI - Potentials of a Markov process are expected suprema JO - ESAIM: Probability and Statistics PY - 2007 SP - 89 EP - 101 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007008/ DO - 10.1051/ps:2007008 LA - en ID - PS_2007__11__89_0 ER -
Föllmer, Hans; Knispel, Thomas. Potentials of a Markov process are expected suprema. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 89-101. doi : 10.1051/ps:2007008. http://www.numdam.org/articles/10.1051/ps:2007008/
[1] A Stochastic Representation Theorem with Applications to Optimization and Obstacle Problems. Ann. Probab. 32 (2005) 1030-1067. | MR | Zbl
and ,[2] American Options, Multi-armed Bandits, and Optimal Consumption Plans: A Unifying View, in Paris-Princeton Lectures on Mathematical Finance 2002, Lect. Notes Math. 1814 (2003) 1-42. | MR | Zbl
and ,[3] Probabilités et potentiel. Chapitres XII-XVI: Théorie du potentiel associée à une résolvante, Théorie des processus de Markov, Hermann, Paris (1987). | MR | Zbl
and ,[4] Les aspects probabilistes du contrôle stochastique, in Ninth Saint Flour Probability Summer School-1979 (Saint Flour, 1979), Lect. Notes Math. 876 (1981) 73-238. | MR | Zbl
,[5] Max-Plus Decomposition of Supermartingale - Application to Portfolio Insurance, http://www.ima.umn.edu/talks/workshops/4-12-16.2004/el_karoui/IMA2004.pdf (2004).
,[6] A non-linear Riesz representation in probabilistic potential theory, in Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques 41 (2005) 269-283. | EuDML | Numdam | MR | Zbl
and ,[7] Constrained optimization with respect to stochastic dominance: Application to portfolio insurance. Math. Finance 16 (2006) 103-117. | MR | Zbl
and ,[8] Eine nichtlineare Riesz-Darstellung bezüglich additiver Funktionale im potentialtheoretischen Kontext. Diploma Thesis, Humboldt University, Berlin (2004).
,[9] Statistical Sequential Analysis. AMS, Providence, Transl. Math. Monographs 38 (1973). | MR | Zbl
,Cité par Sources :