We consider an extension of the Kyle and Back’s model [Back, Rev. Finance Stud. 5 (1992) 387-409; Kyle, Econometrica 35 (1985) 1315-1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence of an equilibrium price when the insider trader and the non informed agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent’s optimal strategy is to do nothing, in other words to be non strategic.
Mots-clés : equilibrium, optimal control, asymmetric information
@article{PS_2007__11__80_0, author = {Ogawa, Shigeyoshi and Pontier, Monique}, title = {Pricing rules under asymmetric information}, journal = {ESAIM: Probability and Statistics}, pages = {80--88}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007007}, mrnumber = {2299648}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007007/} }
TY - JOUR AU - Ogawa, Shigeyoshi AU - Pontier, Monique TI - Pricing rules under asymmetric information JO - ESAIM: Probability and Statistics PY - 2007 SP - 80 EP - 88 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007007/ DO - 10.1051/ps:2007007 LA - en ID - PS_2007__11__80_0 ER -
Ogawa, Shigeyoshi; Pontier, Monique. Pricing rules under asymmetric information. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 80-88. doi : 10.1051/ps:2007007. http://www.numdam.org/articles/10.1051/ps:2007007/
[1] Martingale representation theorems for initially enlarged filtrations. Stoch. Proc. Appl. 89 (2000) 101-116. | Zbl
,[2] Additional logarithmic utility of an insider. Stoch. Proc. Appl. 75 (1998) 263-286. | Zbl
, and ,[3] Insider trading in continuous time. Rev. Financial Stud. 5 (1992) 387-409.
,[4] Dynamic security design. Rev. Economic Stud. to appear. | MR
, , and ,[5]
and N. EL Karoui, Insider trading and nonlinear equilibria:uniqueness: single auction case. Annales d'économie et de statistique 60 (2000) 21-41.[6] Continuous auctions and insider trading: uniqueness and risk aversion. Finance and Stochastics 7 (2003) 47-71. | Zbl
,[7] Grossissement gaussien de la filtration brownienne, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 59-109. | Zbl
and ,[8] Les aspects probabilistes du contrôle stochastique, in Ecole d'été de Saint Flour 1979, Lect. Notes Math. 872 (1981) 73-238. | Zbl
,[9] Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569-586. | Numdam | Zbl
and ,[10] Deterministic and Stochastic Optimal Control. Springer, Berlin (1975). | MR | Zbl
and ,[11] Comment détecter le délit d'initié ? CRAS, Sér. 1 324 (1997) 1137-1142. | Zbl
and ,[12] Insider trading in a continuous time market model. IJTAF. 1 (1998) 331-347. | Zbl
and ,[13] Probabilité neutre au risque et asymétrie d'information. CRAS, Sér. 1 329 (1999) 1009-1014. | Zbl
and ,[14] Asymmetrical information and incomplete markets. IJTAF. 4 (2001) 285-302.
and ,[15] Existence of an equilibrium with discontinuous prices, asymmetric information and non trivial initial -fields. Math. Finance 15 (2005) 99-117. | Zbl
,[16] Grossissement initial, Hypothèse H' et Théorème de Girsanov, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 15-35. | Zbl
,[17] Semi-martingales et grossissement de filtration. Springer-Verlag (1980). | MR | Zbl
,[18] Continuous auctions and insider trading. Econometrica 53 (1985) 1315-1335. | Zbl
,[19] Anticipative portfolio optimization. Adv. Appl. Probab. 28 (1996) 1095-1122. | Zbl
and ,[20] Quelques modèles d'équilibre avec asymétrie d'information. Thèse soutenue à l'université de Paris VII, le 16 décembre 2003.
,[21] Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics 8 (2004) 285-309. | Zbl
,[22] Stochastic Integration and Differential Equations. Springer-Verlag (1990). | MR | Zbl
,[23] On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Anal. Appl. 13 (1995) 573-599. | Zbl
,[24] Grossissement de filtrations et absolue continuité de noyaux, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect Notes Math. 1118 (1985) 6-14. | Zbl
,Cité par Sources :