In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
Mots clés : large deviations, transportation cost inequalities, conditional laws of large numbers, minimum entropy methods
@article{PS_2005__9__283_0, author = {Gozlan, Nathael}, title = {Conditional principles for random weighted measures}, journal = {ESAIM: Probability and Statistics}, pages = {283--306}, publisher = {EDP-Sciences}, volume = {9}, year = {2005}, doi = {10.1051/ps:2005016}, mrnumber = {2174872}, zbl = {1136.60332}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2005016/} }
Gozlan, Nathael. Conditional principles for random weighted measures. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 283-306. doi : 10.1051/ps:2005016. http://www.numdam.org/articles/10.1051/ps:2005016/
[1] Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | Zbl
and ,[2] Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325-338. | Zbl
and ,[3] Partially-finite programming in and the exitence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248-267. | Zbl
and ,[4] Deviations lower bounds and conditional principles. Prépublications de l'Université Paris 10, Nanterre (2002).
and ,[5] I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146-158. | Zbl
,[6] Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob. 12 (1984) 768-793. | Zbl
,[7] Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991) 2032-2066. | Zbl
,[8] Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 2253-2270. | Zbl
, and ,[9] Maximum d'entropie et problèmes des moments. Ann. Inst. Henri Poincaré 26 (1990) 567-596. | Numdam | Zbl
and ,[10] Large deviations techniques and applications. Second edition. Springer-Verlag (1998). | MR | Zbl
and ,[11] Large deviations. Academic Press (1989). | MR | Zbl
and ,[12] The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659-692. | Zbl
, and ,[13] Méthode du maximum d'entropie sur la moyenne et applications. Thèse Orsay (1989).
,[14] Maximum d'entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist. 12 (1991) 67-83. | Zbl
and ,[15] Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328-350. | Zbl
and ,[16] Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005).
,[17] Fundamentals of convex analysis. Springer-Verlag (2001). | MR | Zbl
and ,[18] Minimizer of energy functionals. Acta Math. Hungar. 93 (2001) 281-325. | Zbl
,[19] A convex optimization problem arising from probabilistic questions. Prépublications de l'Université Paris 10-Nanterre (2004).
,[20] Dominating points and entropic projections. Prépublications de l'Université Paris 10-Nanterre (2004).
,[21] Saint-Flour Lecture Notes (2003).
,[22] A Cramer type theorem for weighted random variables. Electronic J. Probab. 7 (2002). | MR | Zbl
,[23] Variational Analysis. Springer-Verlag (1997). | MR | Zbl
and ,[24] Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399-424. | Zbl
and ,[25] Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995). | MR | Zbl
and ,Cité par Sources :