Let be the empirical distribution function (df) pertaining to independent random variables with continuous df . We investigate the minimizing point of the empirical process , where is another df which differs from . If and are locally Hölder-continuous of order at a point our main result states that converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation and the drift-function are of the type .
Mots clés : rescaled empirical process, argmin-CMT, Poisson-process, weak convergence in $D(\mathbb {R})$
@article{PS_2005__9__307_0, author = {Ferger, Dietmar}, title = {On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments}, journal = {ESAIM: Probability and Statistics}, pages = {307--322}, publisher = {EDP-Sciences}, volume = {9}, year = {2005}, doi = {10.1051/ps:2005014}, mrnumber = {2174873}, zbl = {1136.60315}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2005014/} }
TY - JOUR AU - Ferger, Dietmar TI - On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments JO - ESAIM: Probability and Statistics PY - 2005 SP - 307 EP - 322 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2005014/ DO - 10.1051/ps:2005014 LA - en ID - PS_2005__9__307_0 ER -
%0 Journal Article %A Ferger, Dietmar %T On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments %J ESAIM: Probability and Statistics %D 2005 %P 307-322 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2005014/ %R 10.1051/ps:2005014 %G en %F PS_2005__9__307_0
Ferger, Dietmar. On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 307-322. doi : 10.1051/ps:2005014. http://www.numdam.org/articles/10.1051/ps:2005014/
[1] Convergence of probability measures. Wiley, New York (1968). | MR | Zbl
,[2] On some distributions related to the statistic . Ann. Math. Statist. 29 (1958) 179-187. | Zbl
and ,[3] One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22 (1951) 592-596. | Zbl
and ,[4] Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari 4 (1933) 327-350. | Zbl
,[5] Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952) 277-281. | Zbl
,[6] Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966) 109-126. | Zbl
,[7] Measures on nonseparable metric spaces. Illinois J. Math. 11 (1967) 449-453. | Zbl
,[8] Uniform central limit theorems. Cambridge University Press, New York (1999). | MR | Zbl
,[9] On several statistics related to empirical distribution functions. Ann. Math. Statist. 29 (1958) 188-191. | Zbl
,[10] The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul. 63 (1999) 47-58. | Zbl
and ,[11] The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist. 51 (1995) 155-157. | Zbl
,[12] Analysis of change-point estimators under the null hypothesis. Bernoulli 7 (2001) 487-506. | Zbl
,[13] A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica 58 (2004) 83-96. | Zbl
,[14] Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005).
,[15] Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari 4 (1933) 92-99. | Zbl
,[16] Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields 81 (1989) 79-109.
,[17] Computing Chernov's distribution. J. Comput. Graphical Statist. 10 (2001) 388-400.
and ,[18] Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984). | MR | Zbl
,[19] Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981). | Zbl
and ,[20] Foundations of Modern Probability. Springer-Verlag, New York (1999). | MR | Zbl
,[21] Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1-22.
,[22] Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933) 83-91. | Zbl
,[23] Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist. 30 (1959) 251-252. | Zbl
,[24] Weak convergence of probability measures and random functions in the function space . J. Appl. Prob. 10 (1973) 109-121. | Zbl
,[25] The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269-1283. | Zbl
,[26] On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123-130.
,[27] Empirical processes with applications to statistics. Wiley, New York (1986). | MR
and ,[28] Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk. 10 (1944) 179-206. | Zbl
,[29] Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967). | Zbl
,[30] Weak convergence of empirical processes. Springer-Verlag, New York (1996). | MR
and ,Cité par Sources :