In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
Mots clés : fractional brownian motion, linear system, optimal control, quadratic payoff, infinite time
@article{PS_2005__9__185_0, author = {Kleptsyna, Marina L. and Breton, Alain Le and Viot, Michel}, title = {On the infinite time horizon linear-quadratic regulator problem under a fractional brownian perturbation}, journal = {ESAIM: Probability and Statistics}, pages = {185--205}, publisher = {EDP-Sciences}, volume = {9}, year = {2005}, doi = {10.1051/ps:2005008}, mrnumber = {2148966}, zbl = {1136.93463}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2005008/} }
TY - JOUR AU - Kleptsyna, Marina L. AU - Breton, Alain Le AU - Viot, Michel TI - On the infinite time horizon linear-quadratic regulator problem under a fractional brownian perturbation JO - ESAIM: Probability and Statistics PY - 2005 SP - 185 EP - 205 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2005008/ DO - 10.1051/ps:2005008 LA - en ID - PS_2005__9__185_0 ER -
%0 Journal Article %A Kleptsyna, Marina L. %A Breton, Alain Le %A Viot, Michel %T On the infinite time horizon linear-quadratic regulator problem under a fractional brownian perturbation %J ESAIM: Probability and Statistics %D 2005 %P 185-205 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2005008/ %R 10.1051/ps:2005008 %G en %F PS_2005__9__185_0
Kleptsyna, Marina L.; Breton, Alain Le; Viot, Michel. On the infinite time horizon linear-quadratic regulator problem under a fractional brownian perturbation. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 185-205. doi : 10.1051/ps:2005008. http://www.numdam.org/articles/10.1051/ps:2005008/
[1] A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Processes Appl. 100 (2002) 233-253. | Zbl
, , and ,[2] Merging of opinions with increasing information. Ann. Math. Statist. 33 (1962) 882-886. | Zbl
and ,[3] Linear Estimation and Stochastic Control. Chapman and Hall, New York (1977). | MR | Zbl
,[4] Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. | Zbl
and ,[5] Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000) 582-612. | Zbl
, and ,[6] On the prediction of fractional Brownian motion. J. Appl. Probab. 33 (1996) 400-410. | Zbl
and ,[7] Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Inference Stochastic Processes 5 (2002) 229-248. | Zbl
and ,[8] Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statist. Inference Stochastic Processes 5 (2002) 249-271. | Zbl
and ,[9] General approach to filtering with fractional Brownian noises - Application to linear systems. Stochastics Reports 71 (2000) 119-140. | Zbl
, and ,[10] About the linear-quadratic regulator problem under a fractional Brownian perturbation. ESAIM: PS 7 (2003) 161-170. | EuDML | Numdam | Zbl
, and ,[11] Asymptotically optimal filtering in linear systems with fractional Brownian noises. Statist. Oper. Res. Trans. (2004) 28 177-190. | EuDML | Zbl
, and ,[12] Adaptive control in the scalar linear-quadratic model in continious time. Statist. Probab. Lett. 13 (1992) 169-177. | Zbl
,[13] Statist. Random Processes. Springer-Verlag, New York (1978).
and ,[14] Theory of Martingales. Kluwer Academic Publ., Dordrecht (1989). | MR | Zbl
and ,[15] Linear problems for fractional Brownian motion: group approach. Probab. Theory Appl. 1 (2002) 59-70 (in Russian). | Zbl
,[16] Gaussian processes with spectra which are asymptotically equivalent to a power of . Probab. Theory Appl. 14 (1969) 530-532.
,[17] Gaussian stationary processes with which are asymptotic power spectrum. Soviet Math. Dokl. 10 (1969) 134-137. | Zbl
and ,[18] An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999) 571-587. | Zbl
, and ,[19] Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Prob. 37 (2000) 429-452. | Zbl
and ,Cité par Sources :