Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster
ESAIM: Probability and Statistics, Tome 8 (2004), pp. 169-199.

The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on d to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical Bernoulli percolation. We also prove a flat edge result in the case of dimension 2. Various examples are also given.

DOI : 10.1051/ps:2004009
Classification : 60G15, 60K35, 82B43
Mots-clés : percolation, first-passage percolation, chemical distance, infinite cluster, asymptotic shape, random environment
@article{PS_2004__8__169_0,
     author = {Garet, Olivier and Marchand, R\'egine},
     title = {Asymptotic shape for the chemical distance and first-passage percolation on the infinite {Bernoulli} cluster},
     journal = {ESAIM: Probability and Statistics},
     pages = {169--199},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2004},
     doi = {10.1051/ps:2004009},
     mrnumber = {2085613},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2004009/}
}
TY  - JOUR
AU  - Garet, Olivier
AU  - Marchand, Régine
TI  - Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster
JO  - ESAIM: Probability and Statistics
PY  - 2004
SP  - 169
EP  - 199
VL  - 8
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2004009/
DO  - 10.1051/ps:2004009
LA  - en
ID  - PS_2004__8__169_0
ER  - 
%0 Journal Article
%A Garet, Olivier
%A Marchand, Régine
%T Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster
%J ESAIM: Probability and Statistics
%D 2004
%P 169-199
%V 8
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2004009/
%R 10.1051/ps:2004009
%G en
%F PS_2004__8__169_0
Garet, Olivier; Marchand, Régine. Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM: Probability and Statistics, Tome 8 (2004), pp. 169-199. doi : 10.1051/ps:2004009. http://www.numdam.org/articles/10.1051/ps:2004009/

[1] M. Aizenman, H. Kesten and C.M. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Comm. Math. Phys. 111 (1987) 505-531. | Zbl

[2] P. Antal and A. Pisztora, On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036-1048. | Zbl

[3] D. Boivin, First passage percolation: the stationary case. Probab. Theory Related Fields 86 (1990) 491-499. | Zbl

[4] J.R. Brown, Ergodic theory and topological dynamics. Academic Press, Harcourt Brace Jovanovich Publishers, New York. Pure Appl. Math. 70 (1976). | MR | Zbl

[5] R.M. Burton and M. Keane, Density and uniqueness in percolation. Comm. Math. Phys. 121 (1989) 501-505. | Zbl

[6] J.T. Cox, The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12 (1980) 864-879. | Zbl

[7] J.T. Cox and R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 (1981) 583-603. | Zbl

[8] J.T. Cox and H. Kesten, On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981) 809-819. | Zbl

[9] R. Durrett and T.M. Liggett, The shape of the limit set in Richardson's growth model. Ann. Probab. 9 (1981) 186-193. | Zbl

[10] O. Garet, Percolation transition for some excursion sets. Electron. J. Probab. 9 (2004) 255-292 (electronic). | Zbl

[11] O. Häggström and R. Meester, Asymptotic shapes for stationary first passage percolation. Ann. Probab. 23 (1995) 1511-1522. | Zbl

[12] J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif., Springer-Verlag, New York (1965) 61-110. | Zbl

[13] H. Kesten, Aspects of first passage percolation, in École d'été de probabilités de Saint-Flour, XIV-1984, Springer, Berlin. Lect. Notes Math. 1180 (1986) 125-264. | Zbl

[14] H. Kesten and Y. Zhang, The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18 (1990) 537-555. | Zbl

[15] R. Marchand, Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12 (2002) 1001-1038. | Zbl

[16] D. Richardson, Random growth in a tessellation. Proc. Cambridge Philos. Soc. 74 (1973) 515-528. | Zbl

[17] Y.G. Sinai, Introduction to ergodic theory. Princeton University Press, Princeton, N.J., Translated by V. Scheffer. Math. Notes 18 (1976). | MR | Zbl

[18] W.F. Stout, Almost sure convergence. Academic Press, A subsidiary of Harcourt Brace Jovanovich, Publishers, New York-London. Probab. Math. Statist. 24 (1974). | MR | Zbl

[19] J. Van Den Berg and H. Kesten, Inequalities for the time constant in first-passage percolation. Ann. Appl. Probab. 3 (1993) 56-80. | Zbl

Cité par Sources :