Ce travail porte sur l’estimation semi-paramétrique dans un modèle de convolution, où le bruit suit une loi gaussienne centrée de variance inconnue. Les modèles non-paramétriques de convolution, où la loi du bruit est entièrement connue, ont été largement étudiés, et il s’avère que la vitesse d’estimation de la densité du signal est d’autant plus lente que la loi du bruit est régulière [3]. Cependant, la régularité imposée sur permet d’améliorer ces vitesses d’estimation [15]. Dans cet article, nous montrons que lorsque la loi du bruit (qui est supposée gaussienne centrée) possède une variance inconnue (ce qui en pratique est toujours le cas), les vitesses d’estimation de la densité du signal sont dégradées par rapport au cas où la loi du bruit est entièrement connue. Plus précisemment, se restreindre à des densités régulières pour le signal n’améliore pas la vitesse d’estimation de qui est toujours plus lente que . Nous construisons alors deux estimateurs de la variance, dont un consistant dès que le signal a un moment d’ordre fini. Nous mentionnons enfin une conséquence de ce travail qui est la détérioration des vitesses d’estimation des paramètres dans un modèle de régression non-linéaire avec erreurs sur les variables.
This paper deals with semiparametric convolution models, where the noise sequence has a gaussian centered distribution, with unknown variance. Non-parametric convolution models are concerned with the case of an entirely known distribution for the noise sequence, and they have been widely studied in the past decade. The main property of those models is the following one: the more regular the distribution of the noise is, the worst the rate of convergence for the estimation of the signal’s density is [3]. Nevertheless, regularity assumptions on the signal density improve those rates of convergence [15]. In this paper, we show that when the noise (assumed to be gaussian centered) has a variance that is unknown (actually, it is always the case in practical applications), the rates of convergence for the estimation of are seriously deteriorated, whatever its regularity is supposed to be. More precisely, the minimax risk for the pointwise estimation of over a class of regular densities is lower bounded by a constant over . We construct two estimators of , and more particularly, an estimator which is consistent as soon as the signal has a finite first order moment. We also mention as a consequence the deterioration of the rate of convergence in the estimation of the parameters in the nonlinear errors-in-variables model.
Mots-clés : convolution, deconvolution, density estimation, mixing distribution, normal mean mixture model, semiparametric mixture model, noise, variance estimation, minimax risk
@article{PS_2002__6__271_0, author = {Matias, Catherine}, title = {Semiparametric deconvolution with unknown noise variance}, journal = {ESAIM: Probability and Statistics}, pages = {271--292}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002015}, mrnumber = {1943151}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2002015/} }
TY - JOUR AU - Matias, Catherine TI - Semiparametric deconvolution with unknown noise variance JO - ESAIM: Probability and Statistics PY - 2002 SP - 271 EP - 292 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2002015/ DO - 10.1051/ps:2002015 LA - en ID - PS_2002__6__271_0 ER -
Matias, Catherine. Semiparametric deconvolution with unknown noise variance. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 271-292. doi : 10.1051/ps:2002015. http://www.numdam.org/articles/10.1051/ps:2002015/
[1] Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 (1988) 1184-1186. | MR | Zbl
and ,[2] Consistent deconvolution in density estimation. Canad. J. Statist. 17 (1989) 235-239. | MR | Zbl
,[3] Asymptotic normality for deconvolution kernel density estimators. Sankhya Ser. A 53 (1991) 97-110. | MR | Zbl
,[4] Global behavior of deconvolution kernel estimates. Statist. Sinica 1 (1991) 541-551. | MR | Zbl
,[5] On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257-1272. | MR | Zbl
,[6] Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21 (1993) 600-610. | MR | Zbl
,[7] An introduction to probability theory and its applications, Vol. II. John Wiley & Sons Inc., New York (1971). | MR | Zbl
,[8] Applications of the Van Trees inequality: A Bayesian Cramér-Rao bound. Bernoulli 1 (1995) 59-79. | MR | Zbl
and ,[9] Information in semiparametric mixtures of exponential families. Ann. Statist. 27 (1999) 159-177. | MR | Zbl
,[10] Exponential family mixture models (with least-squares estimators). Ann. Statist. 14 (1986) 124-137. | MR | Zbl
,[11] A consistent nonparametric density estimator for the deconvolution problem. Canad. J. Statist. 17 (1989) 427-438. | MR | Zbl
and ,[12] Minimax estimation of some linear functionals in the convolution model, Manuscript. Université Paris-Sud (2001). | Zbl
and ,[13] Decomposition of superposition of density functions on discrete distributions. II. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 21 (1973) 261-382. | MR | Zbl
,[14] On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist. 7 (1997) 307-330. | MR | Zbl
,[15] Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 (1999) 2033-2053. | MR | Zbl
and ,[16] Deconvoluting kernel density estimators. Statistics 21 (1990) 169-184. | MR | Zbl
and ,[17] Rates of convergence of some estimators in a class of deconvolution problems. Statist. Probab. Lett. 9 (1990) 229-235. | MR | Zbl
,[18] Semi-parametric estimation in the non-linear errors-in-variables model. Ann. Statist. 29 (2001) 66-93. | MR | Zbl
.[19] Asymptotic statistics. Cambridge University Press, Cambridge (1998). | MR | Zbl
,[20] Weak convergence and empirical processes. Springer-Verlag, New York (1996). With applications to statistics. | MR | Zbl
and ,[21] Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 (1990) 806-831. | MR | Zbl
,Cité par Sources :