In this paper, we study the problem of non parametric estimation of the stationary marginal density of an or a -mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized contrast. We state non asymptotic risk bounds, regarding to the integrated quadratic risk, for our estimators, in both cases of mixing. We show that they are adaptive in the minimax sense over a large class of Besov balls. In discrete time, we also provide a result for model selection among an exponentially large collection of models (non regular case).
Mots-clés : non parametric estimation, projection estimator, adaptive estimation, model selection, mixing processes, continuous time, discrete time
@article{PS_2002__6__211_0, author = {Comte, Fabienne and Merlev\`ede, Florence}, title = {Adaptive estimation of the stationary density of discrete and continuous time mixing processes}, journal = {ESAIM: Probability and Statistics}, pages = {211--238}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002012}, mrnumber = {1943148}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2002012/} }
TY - JOUR AU - Comte, Fabienne AU - Merlevède, Florence TI - Adaptive estimation of the stationary density of discrete and continuous time mixing processes JO - ESAIM: Probability and Statistics PY - 2002 SP - 211 EP - 238 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2002012/ DO - 10.1051/ps:2002012 LA - en ID - PS_2002__6__211_0 ER -
%0 Journal Article %A Comte, Fabienne %A Merlevède, Florence %T Adaptive estimation of the stationary density of discrete and continuous time mixing processes %J ESAIM: Probability and Statistics %D 2002 %P 211-238 %V 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2002012/ %R 10.1051/ps:2002012 %G en %F PS_2002__6__211_0
Comte, Fabienne; Merlevède, Florence. Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 211-238. doi : 10.1051/ps:2002012. http://www.numdam.org/articles/10.1051/ps:2002012/
[1] Nonparametric identification for diffusion processes. SIAM J. Control Optim. 16 (1978) 380-395. | MR | Zbl
,[2] Recursive estimation in diffusion model. SIAM J. Control Optim. 19 (1981) 676-685. | Zbl
and ,[3] Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. | MR | Zbl
, and ,[4] Random walks with stationary increments and renewal theory. Cent. Math. Tracts, Amsterdam (1979). | MR | Zbl
,[5] From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, edited by D. Pollard, E. Torgersen and G. Yang. Springer-Verlag, New-York (1997) 55-87. | MR | Zbl
and ,[6] Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. | MR | Zbl
and ,[7] An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. | MR | Zbl
and ,[8] How many bins must be put in a regular histogram? Preprint LPMA 721, http://www.proba.jussieu.fr/mathdoc/preprints/index.html (2002).
and ,[9] Parametric rates of nonparametric estimators and predictors for continuous time processes. Ann. Stat. 25 (1997) 982-1000. | MR | Zbl
,[10] Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Second Edition. Springer Verlag, New-York, Lecture Notes in Statist. 110 (1998). | MR | Zbl
,[11] Local time and density estimation in continuous time. Math. Methods Statist. 8 (1999) 22-45. | MR | Zbl
and ,[12] On the approximation theorem of Berkes and Philipp. Demonstratio Math. 15 (1982) 807-815. | MR | Zbl
,[13] Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: P&S 5 (2001) 1-31. | Numdam | MR | Zbl
,[14] On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986) 179-193. | MR | Zbl
and ,[15] Adaptive estimation of the transition density of a regular Markov chain. Math. Methods Statist. 9 (2000) 323-357. | MR | Zbl
,[16] Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. | MR | Zbl
, and ,[17] Density estimation for a class of continuous time or discretely observed processes. Preprint MAP5 2002-2, http://www.math.infor.univ-paris5.fr/map5/ (2002).
and ,[18] Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stochastic Process. Appl. 97 (2002) 111-145. | MR | Zbl
and ,[19] Ten lectures on wavelets. SIAM: Philadelphia (1992). | MR | Zbl
,[20] Limit theorem for mixing processes, Technical Report IRISA. Rennes (1990) 546.
,[21] Constructive approximation. Springer-Verlag (1993). | MR | Zbl
and ,[22] Minimax estimation with wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. | MR | Zbl
and ,[23] Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. | MR | Zbl
, , and ,[24] Mixing properties and examples. Springer-Verlag, Lecture Notes in Statist. (1995). | MR | Zbl
,[25] Nonparametric estimation of a density of unknown smoothness. Theory Probab. Appl. 30 (1985) 557-661. | Zbl
,[26] Learning algorithm for nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440. | Zbl
and ,[27] adaptive density estimation. Bernoulli 2 (1996) 229-247. | MR | Zbl
, and ,[28] On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. | Zbl
and ,[29] Efficient density estimation for ergodic diffusion processes. Stat. Inference Stoch. Process. 1 (1998) 131-155. | Zbl
,[30] Density estimation for a class of continuous time processes. Math. Methods Statist. 6 (1997) 171-199. | MR | Zbl
,[31] Density estimation in a continuous-time stationary Markov process. Ann. Statist. 7 (1979) 341-348. | Zbl
,[32] The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (1995) 1188-1203. | MR | Zbl
,[33] A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA 42 (1956) 43-47. | MR | Zbl
,[34] New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. | MR | Zbl
,[35] adaptive density estimation in a -mixing framework. Ann. Inst. H. Poincaré 34 (1998) 179-208. | Numdam | MR | Zbl
and ,[36] On hypoellipticity conditions and estimates of the mixing rate for stochastic differential equations. Soviet Math. Dokl. 40 (1990) 94-97. | MR | Zbl
,[37] Inequalities for absolutely regular sequences: Application to density estimation. Probab. Theory Related Fields 107 (1997) 467-492. | MR | Zbl
,Cité par Sources :