In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.
Mots-clés : Pólya distribution, hypergeometric distribution, characterization
@article{PS_2002__6__105_0, author = {Ramos, H\'ector M. and Almorza, David and Garc{\'\i}a-Ramos, Juan A.}, title = {On characterizing the {P\'olya} distribution}, journal = {ESAIM: Probability and Statistics}, pages = {105--112}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002005}, zbl = {1003.60016}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2002005/} }
TY - JOUR AU - Ramos, Héctor M. AU - Almorza, David AU - García-Ramos, Juan A. TI - On characterizing the Pólya distribution JO - ESAIM: Probability and Statistics PY - 2002 SP - 105 EP - 112 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2002005/ DO - 10.1051/ps:2002005 LA - en ID - PS_2002__6__105_0 ER -
%0 Journal Article %A Ramos, Héctor M. %A Almorza, David %A García-Ramos, Juan A. %T On characterizing the Pólya distribution %J ESAIM: Probability and Statistics %D 2002 %P 105-112 %V 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2002005/ %R 10.1051/ps:2002005 %G en %F PS_2002__6__105_0
Ramos, Héctor M.; Almorza, David; García-Ramos, Juan A. On characterizing the Pólya distribution. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 105-112. doi : 10.1051/ps:2002005. http://www.numdam.org/articles/10.1051/ps:2002005/
[1] The Pólya distribution. Statist. Neerlandica 17 (1963) 201-213.
,[2] Über die Statistik Verketteter Vorgänge. Z. Angew. Math. Mech. 3 (1923) 279-289. | JFM
and ,[3] Calcul des probabilités - sur l'interprétation de certaines courbes de fréquence. C. R. Acad. Sci. Paris 187 (1928) 870-872. | JFM
and ,[4] On a general class of “contagious” distributions. Ann. Math. Statist. 14 (1943) 389-400. | Zbl
,[5] A simple urn model. Comm. Pure Appl. Math. 2 (1949) 59-70. | MR | Zbl
,[6] The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs. Technometrics 2 (1960) 275-340. | MR | Zbl
,[7] On Characterizing the Markov-Pólya distribution. Sankhyā Ser. A 46 (1984) 444-453. | Zbl
,[8] A generalization of Markov-Pólya distribution its extensions and applications. Biometrical J. 19 (1977) 87-106. | Zbl
and ,[9] Urn Models and Their Application. Wiley, New York (1977). | MR | Zbl
and ,[10] Sur un cas généralisé de la probabilité des épreuves répétées. C. R. Acad. Sci. Paris 184 (1927) 315-317. | JFM
,[11] Description of a Subfamily of the Discrete Pearson System as Generalized-Binomial Distributions. J. Italian Statist. Soc. 2 (1995) 235-249.
and ,[12] On a System of Discrete Distributions. Biometrika 54 (1967) 649-656. | MR | Zbl
,[13] Families of Frequency Distributions. Griffin, London (1972). | MR | Zbl
,[14] On some distributions arising from certain generalized sampling schemes. Commun. Statist. Theory Meth. 15 (1986) 873-891. | MR | Zbl
and ,[15] A probability distribution associated with events with multiple occurrences. Statist. Probab. Lett. 8 (1989) 389-396. | MR | Zbl
and ,[16] A Dictionary and Bibliography of Discrete Distributions. Oliver & Boyd, Edinburgh (1968). | MR | Zbl
and ,[17] New Pólya and inverse Pólya distributions of order . Commun. Statist. Theory Meth. 18 (1989) 2125-2137. | MR | Zbl
, and ,[18] Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1930) 117-161. | JFM | Numdam | MR
,[19] A characterization of hypergeometric distributions. J. Amer. Statist. Assoc. 65 (1970) 926-929. | MR | Zbl
,Cité par Sources :