𝕃 p solutions of reflected backward stochastic differential equations with jumps
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 935-962.

Given p ∈ (1, 2), we study 𝕃$$-solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y, z, u). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p-integrable parameters admits a unique 𝕃$$ solution via a fixed-point argument. The Y -component of the unique 𝕃$$ solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g-evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g-evaluation of reward 𝔏.

DOI : 10.1051/ps/2020026
Classification : 60H10, 60F25, 60J76
Mots-clés : Reflected backward stochastic differential equations with jumps, 𝕃p solutions, comparison theorem, optimal stopping, Snell envelope, Doob–Meyer decomposition, martingale representation theorem, fixed-point argument, $$-evaluations
@article{PS_2020__24_1_935_0,
     author = {Yao, Song},
     title = {$\mathbb{L}^p$ solutions of reflected backward stochastic differential equations with jumps},
     journal = {ESAIM: Probability and Statistics},
     pages = {935--962},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020026},
     mrnumber = {4178791},
     zbl = {1454.60084},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2020026/}
}
TY  - JOUR
AU  - Yao, Song
TI  - $\mathbb{L}^p$ solutions of reflected backward stochastic differential equations with jumps
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 935
EP  - 962
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2020026/
DO  - 10.1051/ps/2020026
LA  - en
ID  - PS_2020__24_1_935_0
ER  - 
%0 Journal Article
%A Yao, Song
%T $\mathbb{L}^p$ solutions of reflected backward stochastic differential equations with jumps
%J ESAIM: Probability and Statistics
%D 2020
%P 935-962
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2020026/
%R 10.1051/ps/2020026
%G en
%F PS_2020__24_1_935_0
Yao, Song. $\mathbb{L}^p$ solutions of reflected backward stochastic differential equations with jumps. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 935-962. doi : 10.1051/ps/2020026. http://www.numdam.org/articles/10.1051/ps/2020026/

[1] K. Akdim and Y. Ouknine, Infinite horizon reflected backward SDEs with jumps and RCLL obstacle. Stoch. Anal. Appl. 24 (2006) 1239–1261. | DOI | MR | Zbl

[2] A. Aman, L p -solution of reflected generalized BSDEs with non-Lipschitz coefficients. Random Oper. Stoch. Equ. 17 (2009) 201–219. | DOI | MR | Zbl

[3] J.-M. Bismut, Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973) 384–404. | DOI | MR | Zbl

[4] P. Briand and R. Carmona, BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13 (2000) 207–238. | DOI | MR | Zbl

[5] P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, L p solutions of backward stochastic differential equations. Stoch. Process. Appl. 108 (2003) 109–129. | DOI | MR | Zbl

[6] S. Choukroun, A. Cosso and H. Pham, Reflected BSDEs with nonpositive jumps, and controller-and-stopper games. Stoch. Process. Appl. 125 (2015) 597–633. | DOI | MR | Zbl

[7] S. Crépey and A. Matoussi, Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison. Ann. Appl. Probab. 18 (2008) 2041–2069. | DOI | MR | Zbl

[8] J. Cvitanić, I. Karatzas and H.M. Soner, Backward stochastic differential equations with constraints on the gains-process Ann. Probab. 26 (1998) 1522–1551. | MR | Zbl

[9] C. Dellacherie and P.-A. Meyer, Probabilités et potentiel. Hermann, Paris. Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372 (1975). | MR | Zbl

[10] C. Dellacherie and P.-A. Meyer, Probabilities and Potential. B, Theory of Martingales, Translated from the French by J.P. Wilson. vol. 72 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1982). | MR | Zbl

[11] R. Dumitrescu, M.-C. Quenez and A. Sulem, Optimal stopping for dynamic risk measures with jumps and obstacle problems. J. Optim. Theory Appl. 167 (2015) 219–242. | DOI | MR | Zbl

[12] N. El Karoui Les aspects probabilistes du contrôle stochastique, in Ninth Saint Flour Probability Summer School—1979 (Saint Flour, 1979), Vol. 876 of Lecture Notes in Mathematics. Springer, Berlin (1981) 73–238. | MR | Zbl

[13] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. | DOI | MR | Zbl

[14] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. | DOI | MR | Zbl

[15] N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

[16] R. Elie and I. Kharroubi, Adding constraints to BSDEs with jumps: an alternative to multidimensional reflections. ESAIM: PS 18 (2014) 233–250. | DOI | Numdam | MR | Zbl

[17] E.H. Essaky, Reflected backward stochastic differential equation with jumps and RCLL obstacle. Bull. Sci. Math. 132 (2008) 690–710. | DOI | MR | Zbl

[18] M. Grigorova, P. Imkeller, E. Offen, Y. Ouknine and M.-C. Quenez, Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27 (2017) 3153–3188. | DOI | MR | Zbl

[19] S. Hamadène and Y. Ouknine, Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8 (2003) 1–20. | DOI | MR | Zbl

[20] S. Hamadène and Y. Ouknine, Reflected backward SDEs with general jumps. Teor. Veroyatnost. i Primenen. 60 (2015) 357–376. | DOI | MR | Zbl

[21] S. Hamadène and A. Popier, L p -solutions for reflected backward stochastic differential equations. Stoch. Dyn. 12 (2012) 1150016, 35. | DOI | MR | Zbl

[22] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. 2003. Springer-Verlag (1987). | DOI | MR | Zbl

[23] I. Karatzas and S.E. Shreve, Methods of Mathematical Finance, Vol. 39 of Applications of Mathematics (New York). Springer-Verlag, New York (1998). | MR | Zbl

[24] N. Kazamaki, A sufficient condition for the uniform integrability of exponential martingales. Math. Rep. Toyama Univ. 2 (1979). | MR | Zbl

[25] T. Klimsiak, Reflected BSDEs with monotone generator. Electron. J. Probab. 17 (2012) 107, 25. | DOI | MR | Zbl

[26] T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. 137 (2013) 268–321. | DOI | MR | Zbl

[27] T. Klimsiak, Reflected BSDEs on filtered probability spaces. Stoch. Process. Appl. 125 (2015) 4204–4241. | DOI | MR | Zbl

[28] J. Neveu, Discrete-Parameter Martingales, rev. edn. Translated from the French by T.P. Speed, North-Holland Mathematical Library, Vol. 10. North-Holland Publishing Co., Amsterdam (1975). | MR | Zbl

[29] É. Pardoux and S.G. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. | DOI | MR | Zbl

[30] S. Peng, Backward SDE and Related g-Expectation, Vol. 364 of Pitman Res. Notes Math. Ser. Longman, Harlow (1997). | MR | Zbl

[31] S. Peng, Dynamical evaluations. C. R. Math. Acad. Sci. Paris 339 (2004) 585–589. | DOI | MR | Zbl

[32] S. Peng, Nonlinear Expectations, Nonlinear Evaluations and Risk Measures, Vol. 1856 of Lecture Notes in Math. Springer, Berlin (2004). | DOI | MR | Zbl

[33] P. Protter, Stochastic Integration and Differential Equations, A new approach. Vol. 21 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1990). | MR | Zbl

[34] M.-C. Quenez and A. Sulem, BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123 (2013) 3328–3357. | DOI | MR | Zbl

[35] M.-C. Quenez and A. Sulem, Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps. Stoch. Process. Appl. 124 (2014) 3031–3054. | DOI | MR | Zbl

[36] L.C.G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, Itô calculus, Reprint of the secondedition (1994). Vol. 2 of Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). | Zbl

[37] S.J. Tang and X.J. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994) 1447–1475. | DOI | MR | Zbl

[38] S. Yao, 𝕃 p solutions of backward stochastic differential equations with jumps. Stoch. Process. Appl. 127 (2017) 3465–3511. | DOI | MR | Zbl

[39] S. Yao, On g -evaluations with 𝕃 p domains under jump filtration. Stoch. Anal. Appl. 36 (2018) 40–102. | DOI | MR | Zbl

Cité par Sources :